我试图让最小化的重量更接近平均重量。我目前的问题是使用SLSQP求解器我找不到符合目标100%的合适重量。我可以使用另一个求解器来解决我的问题吗?或任何数学建议。请帮忙。
我现在的数学是
**min(∑|x-mean(x)|)**
**s.t.** Aw-b=0, w>=0
**bound** 0.2'<'x<0.5
数据
nRow# Variable1 Variable2 Variable3
1 3582.00 233445193.00 559090945.00
2 3394.00 217344811.00 496500751.00
3 3356.00 237746918.00 493639029.00
4 3256.00 219204892.00 461547877.00
5 3415.00 225272825.00 501057960.00
6 3505.00 242819442.00 505073223.00
7 3442.00 215258725.00 490458632.00
8 3381.00 227681178.00 503102998.00
9 3392.00 215189377.00 487026744.00
w1 w2 w3
Target 8531.00 429386951.00 1079115532.00
问题:找到接近平均值的最小化重量
Python代码:
A = np.array([[3582.000000, 3394.000000, 3356.000000, 3256.000000, 3415.000000,
3505.000000, 3442.000000, 3381.000000, 3392.000000],
[233445193.000000, 217344811.000000, 237746918.000000,
219204892.000000, 225272825.000000, 242819442.000000,
215258725.000000, 227681178.000000, 215189377.000000],
[559090945.000000, 496500751.000000, 493639029.000000,
461547877.000000, 501057960.000000, 505073223.000000,
490458632.000000, 503102998.000000, 487026744.000000]])
b = np.array([8531, 1079115532, 429386951])
n=9
def fsolveMin(A,b,n):
# The constraints: Ax = b
def cons(x):
return A.dot(x)-b
cons = ({'type':'eq','fun':cons},
{'type':'ineq','fun':lambda x:x[0]})
# The minimizing constraints: the total absolute difference between the coefficients
def fn(x):
return np.sum(np.abs(x-np.mean(x)))
# Initialize the coefficients randomly
z0 = abs(np.random.randn(len(A[1,:])))
# Set up bound
# bnds = [(0, None)]*n
# Solve the problem
sol = minimize(fn, x0 = z0, constraints = cons, method = 'SLSQP', options={'disp': True})
#expected 35%
print(sol.x)
print(A.dot(sol.x))
#print(fn(sol.x))
print(str(fsolveMin(A,b,n))+"\n\n")
答案 0 :(得分:1)
为了让您了解如何臃肿,这将通过scipy&#39; s linprog 等低级工具获得,因为我们必须模仿他们的标准格式强>:
基本思路是:
x-mean
的临时变量)现在这个例子有效。
对于您的数据,您必须注意边界。确保问题保持可行。问题本身非常不稳定,因为Ax=b
使用了硬约束;通常你会在这里最小化一些标准/最小二乘(不再有LP; QP / SOCP)并将此错误添加到目标中)!
可能需要在某个时刻将解算器从method='simplex'
切换到method='interior-point'
(仅在scipy 1.0之后可用)。
替代:
使用cvxpy,配方更容易(提到两种变体),你可以免费得到很好的解算器(ECOS)。
代码:
import numpy as np
import scipy.optimize as spo
np.set_printoptions(linewidth=120)
np.random.seed(1)
""" Create random data """
M, N = 2, 3
A = np.random.random(size=(M,N))
x_hidden = np.random.random(size=N)
b = A.dot(x_hidden) # target
n = N
print('Original A')
print(A)
print('hidden x: ', x_hidden)
print('target: ', b)
""" Optimize as LP """
def solve(A, b, n):
print('Reformulation')
am, an = A.shape
# Introduce aux-vars
# 1: y = mean
# n: z = x - mean
# n: abs(z)
n_plus_aux_vars = 3*n + 1
# Equality constraint: y = mean
eq_mean_A = np.zeros(n_plus_aux_vars)
eq_mean_A[:n] = 1. / n
eq_mean_A[n] = -1.
eq_mean_b = np.array([0])
print('y = mean A:')
print(eq_mean_A)
print('y = mean b:')
print(eq_mean_b)
# Equality constraints: Ax = b
eq_A = np.zeros((am, n_plus_aux_vars))
eq_A[:, :n] = A[:, :n]
eq_b = np.copy(b)
print('Ax=b A:')
print(eq_A)
print('Ax=b b:')
print(eq_b)
# Equality constraints: z = x - mean
eq_mean_A_z = np.hstack([-np.eye(n), np.ones((n, 1)), + np.eye(n), np.zeros((n, n))])
eq_mean_b_z = np.zeros(n)
print('z = x - mean A:')
print(eq_mean_A_z)
print('z = x - mean b:')
print(eq_mean_b_z)
# Inequality constraints: absolute values -> x <= x' ; -x <= x'
ineq_abs_0_A = np.hstack([np.zeros((n, n)), np.zeros((n, 1)), np.eye(n), -np.eye(n)])
ineq_abs_0_b = np.zeros(n)
ineq_abs_1_A = np.hstack([np.zeros((n, n)), np.zeros((n, 1)), -np.eye(n), -np.eye(n)])
ineq_abs_1_b = np.zeros(n)
# Bounds
# REMARK: Do not touch anything besides the first bounds-row!
bounds = [(0., 1.) for i in range(n)] + \
[(None, None)] + \
[(None, None) for i in range(n)] + \
[(0, None) for i in range(n)]
# Objective
c = np.zeros(n_plus_aux_vars)
c[-n:] = 1
A_eq = np.vstack((eq_mean_A, eq_A, eq_mean_A_z))
b_eq = np.hstack([eq_mean_b, eq_b, eq_mean_b_z])
A_ineq = np.vstack((ineq_abs_0_A, ineq_abs_1_A))
b_ineq = np.hstack([ineq_abs_0_b, ineq_abs_1_b])
print('solve...')
result = spo.linprog(c, A_ineq, b_ineq, A_eq, b_eq, bounds=bounds, method='simplex')
print(result)
x = result.x[:n]
print('x: ', x)
print('residual Ax-b: ', A.dot(x) - b)
print('mean: ', result.x[n])
print('x - mean: ', x - result.x[n])
print('l1-norm(x - mean) / objective: ', np.linalg.norm(x - result.x[n], 1))
solve(A, b, n)
输出:
Original A
[[ 4.17022005e-01 7.20324493e-01 1.14374817e-04]
[ 3.02332573e-01 1.46755891e-01 9.23385948e-02]]
hidden x: [ 0.18626021 0.34556073 0.39676747]
target: [ 0.32663584 0.14366255]
Reformulation
y = mean A:
[ 0.33333333 0.33333333 0.33333333 -1. 0. 0. 0. 0. 0. 0. ]
y = mean b:
[0]
Ax=b A:
[[ 4.17022005e-01 7.20324493e-01 1.14374817e-04 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00]
[ 3.02332573e-01 1.46755891e-01 9.23385948e-02 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00]]
Ax=b b:
[ 0.32663584 0.14366255]
z = x - mean A:
[[-1. -0. -0. 1. 1. 0. 0. 0. 0. 0.]
[-0. -1. -0. 1. 0. 1. 0. 0. 0. 0.]
[-0. -0. -1. 1. 0. 0. 1. 0. 0. 0.]]
z = x - mean b:
[ 0. 0. 0.]
solve...
fun: 0.078779576294411263
message: 'Optimization terminated successfully.'
nit: 10
slack: array([ 0.07877958, 0. , 0. , 0. , 0.07877958, 0. , 0.76273076, 0.68395118,
0.72334097])
status: 0
success: True
x: array([ 0.23726924, 0.31604882, 0.27665903, 0.27665903, -0.03938979, 0.03938979, 0. , 0.03938979,
0.03938979, 0. ])
x: [ 0.23726924 0.31604882 0.27665903]
residual Ax-b: [ 5.55111512e-17 0.00000000e+00]
mean: 0.276659030053
x - mean: [-0.03938979 0.03938979 0. ]
l1-norm(x - mean) / objective: 0.0787795762944
现在原始数据,事情变得艰难!
你需要:
示例:
A = np.array([[3582.000000, 3394.000000, 3356.000000, 3256.000000, 3415.000000,
3505.000000, 3442.000000, 3381.000000, 3392.000000],
[233445193.000000, 217344811.000000, 237746918.000000,
219204892.000000, 225272825.000000, 242819442.000000,
215258725.000000, 227681178.000000, 215189377.000000],
[559090945.000000, 496500751.000000, 493639029.000000,
461547877.000000, 501057960.000000, 505073223.000000,
490458632.000000, 503102998.000000, 487026744.000000]])
b = np.array([8531., 1079115532., 429386951.])
A /= 10000. # scaling
b /= 10000. # scaling
bounds = [(-50., 50.) for i in range(n)] + \
...
result = spo.linprog(c, A_ineq, b_ineq, A_eq, b_eq, bounds=bounds, method='interior-point')
输出:
solve...
con: array([ 3.98410760e-09, 1.18067724e-08, 8.12879938e-04, 1.75969041e-03, -3.93853838e-09, -3.96305566e-09,
-4.10043555e-09, -3.94957667e-09, -3.88362764e-09, -3.89452381e-09, -3.95134592e-09, -3.92182287e-09,
-3.85762178e-09])
fun: 52.742900697626389
message: 'Optimization terminated successfully.'
nit: 8
slack: array([ 5.13245265e+01, 1.89309145e-08, 1.83429094e-09, 4.28687782e-09, 1.03726911e-08, 2.77000474e-09,
1.41837413e+00, 6.75769654e-09, 8.65285462e-10, 2.78501844e-09, 3.09591539e-09, 5.27429006e+01,
1.30944103e-08, 5.32994799e-09, 3.15369669e-08, 2.51943821e-09, 7.54848797e-09, 3.22510447e-09])
status: 0
success: True
x: array([ -2.51938304e+01, 4.68432810e-01, 2.68398831e+01, 4.68432822e-01, 4.68432815e-01, 4.68432832e-01,
-2.40754247e-01, 4.68432818e-01, 4.68432819e-01, 4.68432822e-01, -2.56622633e+01, -7.91749954e-09,
2.63714503e+01, 4.40376624e-09, -2.52137156e-09, 1.43834811e-08, -7.09187065e-01, 3.95395716e-10,
1.17990950e-09, 2.56622633e+01, 1.10134149e-08, 2.63714503e+01, 8.69064406e-09, 7.85131955e-09,
1.71534858e-08, 7.09187068e-01, 7.15309226e-09, 2.04519496e-09])
x: [-25.19383044 0.46843281 26.83988313 0.46843282 0.46843282 0.46843283 -0.24075425 0.46843282 0.46843282]
residual Ax-b: [ -1.18067724e-08 -8.12879938e-04 -1.75969041e-03]
mean: 0.468432821891
x - mean: [ -2.56622633e+01 -1.18805552e-08 2.63714503e+01 4.54189575e-10 -6.40499920e-09 1.04889573e-08 -7.09187069e-01
-3.52642715e-09 -2.67771227e-09]
l1-norm(x - mean) / objective: 52.7429006758
修改强>
这里是基于SOCP的最小二乘(软约束)方法,我建议在数值稳定性方面!这种方法可以而且应该根据您的需要进行调整。它是使用已经提到的使用ECOS求解器的cvxpy建模工具实现的。
基本理念:
min(l1-norm(x - mean(x)) st. Ax=b
min(l2-norm(Ax-b) + c * l1-norm(x - mean(x)))
c
是非负折衷参数c
:Ax=b
更重要c
:x - mean(x)
更为重要示例代码&amp;您的数据和-50, 50
和c=1e-3
的边界输出:
import numpy as np
import cvxpy as cvx
""" DATA """
A = np.array([[3582.000000, 3394.000000, 3356.000000, 3256.000000, 3415.000000,
3505.000000, 3442.000000, 3381.000000, 3392.000000],
[233445193.000000, 217344811.000000, 237746918.000000,
219204892.000000, 225272825.000000, 242819442.000000,
215258725.000000, 227681178.000000, 215189377.000000],
[559090945.000000, 496500751.000000, 493639029.000000,
461547877.000000, 501057960.000000, 505073223.000000,
490458632.000000, 503102998.000000, 487026744.000000]])
b = np.array([8531., 1079115532., 429386951.])
n = 9
# A /= 10000. scaling would be a good idea
# b /= 10000. """
""" SOCP-based least-squares approach """
def solve(A, b, n, c=1e-1):
x = cvx.Variable(n)
y = cvx.Variable(1) # mean
lower_bounds = np.zeros(n) - 50 # -50
upper_bounds = np.zeros(n) + 50 # 50
constraints = []
constraints.append(x >= lower_bounds)
constraints.append(x <= upper_bounds)
constraints.append(y == cvx.sum_entries(x) / n)
objective = cvx.Minimize(cvx.norm(A*x-b, 2) + c * cvx.norm(x - y, 1))
problem = cvx.Problem(objective, constraints)
problem.solve(solver=cvx.ECOS, verbose=True)
print('Objective: ', problem.value)
print('x: ', x.T.value)
print('mean: ', y.value)
print('Ax-b: ')
print((A*x - b).value)
print('x - mean: ', (x - y).T.value)
solve(A, b, n)
输出:
ECOS 2.0.4 - (C) embotech GmbH, Zurich Switzerland, 2012-15. Web: www.embotech.com/ECOS
It pcost dcost gap pres dres k/t mu step sigma IR | BT
0 +2.637e-17 -1.550e+06 +7e+08 1e-01 2e-04 1e+00 2e+07 --- --- 1 1 - | - -
1 -8.613e+04 -1.014e+05 +8e+06 1e-03 2e-06 2e+03 2e+05 0.9890 1e-04 2 1 1 | 0 0
2 -1.287e+03 -1.464e+03 +1e+05 1e-05 9e-08 4e+01 3e+03 0.9872 1e-04 3 1 1 | 0 0
3 +1.794e+02 +1.900e+02 +2e+03 2e-07 1e-07 1e+01 5e+01 0.9890 5e-03 5 3 4 | 0 0
4 -1.388e+00 -6.826e-01 +1e+02 1e-08 7e-08 9e-01 3e+00 0.9458 4e-03 7 6 6 | 0 0
5 +5.491e+00 +5.683e+00 +1e+01 1e-09 8e-09 2e-01 3e-01 0.9617 6e-02 1 1 1 | 0 0
6 +6.480e+00 +6.505e+00 +1e+00 2e-10 5e-10 3e-02 4e-02 0.8928 2e-02 1 1 1 | 0 0
7 +6.746e+00 +6.746e+00 +2e-02 3e-12 5e-10 5e-04 6e-04 0.9890 5e-03 1 0 0 | 0 0
8 +6.759e+00 +6.759e+00 +3e-04 2e-12 2e-10 6e-06 7e-06 0.9890 1e-04 1 0 0 | 0 0
9 +6.759e+00 +6.759e+00 +3e-06 2e-13 2e-10 6e-08 8e-08 0.9890 1e-04 2 0 0 | 0 0
10 +6.758e+00 +6.758e+00 +3e-08 5e-14 2e-10 7e-10 9e-10 0.9890 1e-04 1 0 0 | 0 0
OPTIMAL (within feastol=2.0e-10, reltol=4.7e-09, abstol=3.2e-08).
Runtime: 0.002901 seconds.
Objective: 6.757722879805085
x: [[-18.09169736 -5.55768047 11.12130645 11.48355878 -1.13982006
12.4290884 -3.00165819 -1.05158589 -2.4468432 ]]
mean: 0.416074272576
Ax-b:
[[ 2.17051777e-03]
[ 1.90734863e-06]
[ -5.72204590e-06]]
x - mean: [[-18.50777164 -5.97375474 10.70523218 11.0674845 -1.55589434
12.01301413 -3.41773246 -1.46766016 -2.86291747]]
这种方法总是输出一个可行的解决方案(对于我们的任务),然后你可以决定观察到的残差是否适合你。
正如您所观察到的,在所有公式中,0的下界都是致命的(请查看数据中的幅度差异!)。
这里0的下限将为您提供一个具有一些高残差的解决方案。
E.g:
c=1e-7
0 / 15
输出:
Objective: 785913288.2410747
x: [[ -5.57966858e-08 -4.74997454e-08 1.56066068e+00 1.68021234e-07
-3.55602958e-08 1.75340641e-06 -4.69609562e-08 -3.10216680e-08
-4.39482554e-08]]
mean: 0.173406926909
Ax-b:
[[ -3.29341696e+03]
[ -7.08072860e+08]
[ 3.41016903e+08]]
x - mean: [[-0.17340698 -0.17340697 1.38725375 -0.17340676 -0.17340696 -0.17340517
-0.17340697 -0.17340696 -0.17340697]]
答案 1 :(得分:0)
首先引入一个带约束的自由变量mu:
mu = sum(i, x(i))/n
然后用:
引入非负变量y(i)
-y(i) <= x(i) - mu <= y(i)
现在你可以最小化
min sum(i,y(i))
现在这是一个直线LP(线性目标和线性约束),可以使用任何LP求解器求解。