我的数据集具有以下功能:玩家ID,团队,周和点。
我想计算前几周TEAM积分的平均值,但不是过去几周,只是到最后5周或更少(如果当前周小于5)。
示例:对于team = A,week = 7,结果将是team = A和第2,3,4,5和6周的POINTS的平均值。
可以使用以下代码创建数据集:
# set the seed for reproducibility
set.seed(123)
player_id<-c(rep(1,15),rep(2,15),rep(3,15),rep(4,15))
week<-1:15
team<-c(rep("A",30),rep("B",30))
points<-round(runif(60,1,10),0)
mydata<- data.frame(player_id=player_id,team=team,week=rep(week,4),points)
我希望有一个没有大量循环的解决方案,因为数据集很大。
我在这里做了相关的问题,可能会有所帮助,但我无法适应这种情况。
谢谢!
答案 0 :(得分:1)
如果您需要dplyr
解决方案,我们会根据my answer to one of your other questions调整方法:
library(dplyr)
library(zoo)
# set the seed for reproducibility
set.seed(123)
player_id<-c(rep(1,15),rep(2,15),rep(3,15),rep(4,15))
week<-1:15
team<-c(rep("A",30),rep("B",30))
points<-round(runif(60,1,10),0)
mydata<- data.frame(player_id=player_id,team=team,week=rep(week,4),points)
roll_mean <- function(x, k) {
result <- rollapplyr(x, k, mean, partial=TRUE, na.rm=TRUE)
result[is.nan(result)] <- NA
return( result )
}
按团队聚合可能更容易:
team_data <- mydata %>%
select(-player_id) %>%
group_by(team, week) %>%
arrange(week) %>%
summarise(team_points = sum(points)) %>%
mutate(rolling_team_mean = roll_mean(lag(team_points), k=5)) %>%
arrange(team)
team_data
# A tibble: 30 x 4
# Groups: team [2]
team week team_points rolling_team_mean
<fctr> <int> <dbl> <dbl>
1 A 1 13 NA
2 A 2 11 13.00
3 A 3 6 12.00
4 A 4 13 10.00
5 A 5 19 10.75
6 A 6 10 12.40
7 A 7 13 11.80
8 A 8 16 12.20
9 A 9 16 14.20
10 A 10 12 14.80
# ... with 20 more rows
然后,如果你愿意,我们可以将所有东西重新组合在一起:
mydata <- inner_join(mydata, team_data) %>%
arrange(week, team, player_id)
mydata[1:12, ]
player_id team week points team_points rolling_team_mean
1 1 A 1 4 13 NA
2 2 A 1 9 13 NA
3 3 B 1 10 12 NA
4 4 B 1 2 12 NA
5 1 A 2 8 11 13
6 2 A 2 3 11 13
7 3 B 2 9 12 12
8 4 B 2 3 12 12
9 1 A 3 5 6 12
10 2 A 3 1 6 12
11 3 B 3 7 12 12
12 4 B 3 5 12 12
答案 1 :(得分:1)
这是一种方式:
# compute points per team per week
pts <- with(mydata, tapply(points, list(team, week), sum, default = 0))
pts
# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#A 13 11 6 13 19 10 13 16 16 12 17 11 13 10 4
#B 12 12 12 11 10 6 13 11 6 9 5 7 13 13 6
# compute the 5-week averages
sapply(setNames(seq(2, ncol(pts)), seq(2, ncol(pts))),
function(i) {
apply(pts[, seq(max(1, i - 5), i - 1), drop = FALSE], 1, mean)
})
# 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#A 13 12 10 10.75 12.4 11.8 12.2 14.2 14.8 13.4 14.8 14.4 13.8 12.6
#B 12 12 12 11.75 11.4 10.2 10.4 10.2 9.2 9.0 8.8 7.6 8.0 9.4
如果week
变量有差距,这将导致错误的结果。