将正/负约束应用于分位数回归的系数

时间:2017-10-22 23:06:55

标签: r constraints quantile quantreg

在包quantreg中,可以执行惩罚的分位数回归。选择被认为具有统计显着性的变量是“容易的”。然而,当我考虑对系数应用约束时:即一些严格为正/负(否则它们将为零),我只是无法弄清楚它是如何完成的!我到目前为止的代码是:

quant<-c(0.4,0.5,0.6)

for (t in 400:600){     #the first 400 rows are the trainset, the remaining the test set. In each iteration
  x=X[1:399,]           #we increase the trainset by 1row and use it to predict for the next.
  y=Y[1:399]
  for (i in 1:quant) {
    eq=rqss(y~x,method="lasso",tau=quant[i],lambda=lambdas) #find the significant variable though a Lasso quantile.
    s=summary(eq)
    findsigPV=s$coef[2:28,4] #select the stat. significant coefficient/variable
    selectedPV=findsigPV<=0.05
    if (sum(selectedPV)==0){
      SelectedPV=rank(findsigPV)==1
    }
    newx=as.matrix(subset(X[1:t,],select=which(selectedPV))) #new matrix with the selected variable
    eq=rq(y~newx[1:(t-1),],tau=quant[i])  #applies the new q. regression with the selected coeff from the lasso
    pr[t-400+1,i]=c(1,newx[t,])%*%eq$coef #saves the forecast
  }
}

我担心这个问题非常明显。我考虑过使用ifelse(eq$coef<0,0,eq$coef),但考虑到一些变量被限制为正或负,这不是理想的解决方案。有什么想法吗?

编辑:我忘了包含的东西,就是每次迭代选择一个(可能)不同于前一次迭代的变量!

1 个答案:

答案 0 :(得分:1)

添加

j=2
    for (k in 1:23){

      if (II[k]){ 
        if (k <=12){  #positive constraint to the first 12 variables lets say
          if (eq$coeff[j] <0){
            eq$coeff[j] =0}
          j=j+1}
        if (k > 12){ #negative constraint to the remaining ones
          if (eq$coeff[j] >0){
            eq$coeff[j] =0}
          j=j+1}  
      }
    }
    print(eq$coeff)

在做出预测之前,解决了这个问题。