我想写一个带有两个自然参数的函数,并返回一个可能是它们相等的证明。
我正在尝试
equal : (a: Nat) -> (b: Nat) -> Maybe ((a == b) = True)
equal a b = case (a == b) of
True => Just Refl
False => Nothing
但是我收到以下错误
When checking argument x to constructor Prelude.Maybe.Just:
Type mismatch between
True = True (Type of Refl)
and
Prelude.Nat.Nat implementation of Prelude.Interfaces.Eq, method == a
b =
True (Expected type)
Specifically:
Type mismatch between
True
and
Prelude.Nat.Nat implementation of Prelude.Interfaces.Eq, method == a
b
这是正确的方法吗?
此外,作为奖金问题,如果我做
equal : (a: Nat) -> (b: Nat) -> Maybe ((a == b) = True)
equal a b = case (a == b) of
True => proof search
False => Nothing
我得到了
INTERNAL ERROR: Proof done, nothing to run tactic on: Solve
pat {a_504} : Prelude.Nat.Nat. pat {b_505} : Prelude.Nat.Nat. Prelude.Maybe.Nothing (= Prelude.Bool.Bool Prelude.Bool.Bool (Prelude.Interfaces.Prelude.Nat.Nat implementation of Prelude.Interfaces.Eq, method == {a_504} {b_505}) Prelude.Bool.True)
This is probably a bug, or a missing error message.
Please consider reporting at https://github.com/idris-lang/Idris-dev/issues
这是一个已知问题还是应该报告?
答案 0 :(得分:5)
让我们来看看Eq
的{{1}}界面的实现:
Nat
您可以通过遵循Eq Nat where
Z == Z = True
(S l) == (S r) = l == r
_ == _ = False
函数的结构来解决问题,如下所示:
(==)
答案 1 :(得分:4)
您可以使用with
代替case
(依赖模式匹配)来执行此操作:
equal : (a: Nat) -> (b: Nat) -> Maybe ((a == b) = True)
equal a b with (a == b)
| True = Just Refl
| False = Nothing
请注意,正如安东指出的那样,这仅仅是布尔测试结果的见证,是一个比适当平等更弱的主张。它可能有助于推进有关if a==b then ...
的证明,但它不允许您将a
替换为b
。