我想知道,给定一个整数列表,说l
,如果允许我们从此列表中选择3个整数,请说left
,middle
,{{1} },right
和middle > left, right
在列表中以该顺序出现(即。left, middle, right
),是否存在index(left)<index(middle)<index(right)
解决方案,用于查找{{1}的最大值}?您可能会认为不符合这些条件的列表不会出现(例如,Eric Duminil所指出的[5,0,5])
目前,我能够提出我认为(大致)O(n)
解决方案(如果我错了,请纠正我)。
基本上,我目前的想法是:
middle - left + middle - right
非常感谢帮助/提示。
谢谢!
答案 0 :(得分:5)
您可以运行一次数字,保持运行最小值,并将其存储在每一步,以便最后知道每个索引左侧的最小值。 那是O(n)。
同样,您可以从右到左遍历所有数字,并计算出每个索引右侧的最小值。那是O(n)。
然后,您可以浏览每个可能的middle
值,并从之前的计算中获取left
和right
值。那是O(n)。
O(n)+ O(n)+ O(n)= O(n)。
答案 1 :(得分:3)
诀窍是列表的最小值始终是解决方案的一部分(左或右)。
答案 2 :(得分:3)
这是一种计算每个索引的最小值,左和右的方法,在O(n)中:
import random
N = 10
l = [random.randrange(N) for _ in range(N)]
print(l)
# => [9, 9, 3, 4, 6, 7, 0, 0, 7, 6]
min_lefts = []
min_left = float("inf")
min_rights = [None for _ in range(N)]
min_right = float("inf")
for i in range(N):
e = l[i]
if e < min_left:
min_left = e
min_lefts.append(min_left)
print(min_lefts)
# => [9, 9, 3, 3, 3, 3, 0, 0, 0, 0]
for i in range(N-1,-1,-1):
e = l[i]
if e < min_right:
min_right = e
min_rights[i] = min_right
print(min_rights)
# => [0, 0, 0, 0, 0, 0, 0, 0, 6, 6]
您现在可以遍历l
中的每个中间元素(idx
和1
之间的N-2
),并找到2 * l[idx] - min_rights[idx] - min_lefts[idx]
的最小值。此操作也是O(n):
print(max(2 * l[i] - min_rights[i] - min_lefts[i] for i in range(1, N-2)))
输出:
11
是2 * 7 - 0 - 3
。
答案 3 :(得分:1)
以下是一些时间安排!随意编辑执行计时和\添加新条目的代码。
from timeit import timeit
setup10 = '''
import numpy.random as nprnd
lst = list(nprnd.randint(1000, size=10))
'''
setup100 = '''
import numpy.random as nprnd
lst = list(nprnd.randint(1000, size=100))
'''
setup1000 = '''
import numpy.random as nprnd
lst = list(nprnd.randint(1000, size=1000))
'''
fsetup = '''
import sys
def f2(lst):
N = len(lst)
maximum = 0
for idx in range(1, N - 1):
left = min(lst[0: idx])
right = min(lst[idx + 1:])
middle = lst[idx]
if left < middle and right < middle:
new_max = middle - left + middle - right
maximum = max(new_max, maximum)
return maximum
def eric(lst):
N = len(lst)
min_lefts = []
min_left = float("inf")
min_rights = [None for _ in range(N)]
min_right = float("inf")
for i in range(N):
e = lst[i]
if e < min_left:
min_left = e
min_lefts.append(min_left)
for i in range(N-1,-1,-1):
e = lst[i]
if e < min_right:
min_right = e
min_rights[i] = min_right
return max(2 * lst[i] - min_rights[i] - min_lefts[i] for i in range(1, N-2))
def bpl(lst):
res = -sys.maxsize
a = sys.maxsize
b = -sys.maxsize
c = sys.maxsize
for i, v in enumerate(lst[1:-1]):
a = min(lst[i], a)
c = min(lst[i + 2], c)
b = max(lst[i], b)
res = max(2 * b - a - c, res)
return res
def meow(l):
N = len(l)
right_min = (N - 2) * [sys.maxsize]
right_min[0] = l[N - 1]
for i in range(3, N):
right_min[i - 2] = min(right_min[i - 2], l[N - i + 1])
left = l[2]
maximum = 2*l[1] - left - right_min[N - 3]
for idx in range(2, N - 1):
left = min(left, l[idx-1])
right = right_min[N - idx - 2]
middle = l[idx]
if left < middle and right < middle:
new_max = middle - left + middle - right
maximum = max(new_max, maximum)
return maximum
'''
print('OP with 10\t:{}'.format(timeit(stmt="f2(lst)", setup=setup10 + fsetup, number=100)))
print('eric with 10\t:{}'.format(timeit(stmt="eric(lst)", setup=setup10 + fsetup, number=100)))
print('bpl with 10\t:{}'.format(timeit(stmt="bpl(lst)", setup=setup10 + fsetup, number=100)))
print('meow with 10\t:{}'.format(timeit(stmt="meow(lst)", setup=setup10 + fsetup, number=100)))
print()
print('OP with 100\t:{}'.format(timeit(stmt="f2(lst)", setup=setup100 + fsetup, number=100)))
print('eric with 100\t:{}'.format(timeit(stmt="eric(lst)", setup=setup100 + fsetup, number=100)))
print('bpl with 100\t:{}'.format(timeit(stmt="bpl(lst)", setup=setup100 + fsetup, number=100)))
print('meow with 10\t:{}'.format(timeit(stmt="meow(lst)", setup=setup100 + fsetup, number=100)))
print()
print('OP with 1000\t:{}'.format(timeit(stmt="f2(lst)", setup=setup1000 + fsetup, number=100)))
print('eric with 1000\t:{}'.format(timeit(stmt="eric(lst)", setup=setup1000 + fsetup, number=100)))
print('bpl with 1000\t:{}'.format(timeit(stmt="bpl(lst)", setup=setup1000 + fsetup, number=100)))
print('meow with 10\t:{}'.format(timeit(stmt="meow(lst)", setup=setup1000 + fsetup, number=100)))
10 elements on the list, 100 repetitions
OP :0.00102
eric :0.00117
bpl :0.00141
meow :0.00159
100 elements on the list, 100 repetitions
OP :0.03200
eric :0.00654
bpl :0.01023
meow :0.02011
1000 elements on the list, 100 repetitions
OP :2.34821
eric :0.06086
bpl :0.10305
meow :0.21190
作为奖励,效率低下的单线:
maximum = max(2*z -sum(x) for x, z in zip([[min(lst[:i+1]), min(lst[i+2:])] for i, _ in enumerate(lst[:-2])], lst[1:-1]))
答案 4 :(得分:0)
可能的解决方案:
import sys
import random
random.seed(1)
l = [random.randint(0, 100) for i in range(10)]
print(l)
res = -sys.maxsize
a = sys.maxsize
b = -sys.maxsize
c = sys.maxsize
for i, v in enumerate(l[1:-1]):
a = min(l[i], a)
c = min(l[i + 2], c)
b = max(l[i], b)
res = max(2 * b - a - c, res)
print(res)
输出:
[13, 85, 77, 25, 50, 45, 65, 79, 9, 2]
155
答案 5 :(得分:-1)
你肯定是在正确的轨道上,你只需要摆脱那些最小的操作。所以我的提示是你可以事先预先计算它们(在线性时间内),然后在循环中查找min,就像你已经在做的那样。
澄清一下:您必须为所有min(list[0:i])
预先计算min(list[i:n])
和i
,之前您已经拥有的部分。我们的想法是将它们存储在两个数组中,例如m1
和m2
,例如m1[i] = min(list[0:i])
和m2[i] = min(list[i:n])
。然后,在循环中使用m1
和m2
现在的挑战是在线性时间内计算m1
和m2
,这意味着您不能使用min
函数来计算它们。如果您有m1[i]
,那么如何使用m1[i+1]
计算list[i+1]
?