H2O如何处理多属性分类特征(即具有逗号分隔值的列,如('1,2,3','1,4','1,2')?我是否需要将它们分开手动多列(单热编码)?
更具体地说,假设数据是制表符分隔文件,如下所示:
item_A.signal_A.connect(item_B.function_B(currentIndex, C));
答案 0 :(得分:1)
答案取决于这些数字代表什么。
单热编码涉及获取分类列并将该单个列扩展为一组布尔列。这里的假设是,在这些布尔列中,训练观察一次只能属于一个列("一个"在一个热点中来自) - 仅一列可以是"活跃"。
如果您想考虑% clc;
% clear;
% close all;
%% ~~~~~~~~~~~~~~~~~~~~~~ Simulation Data Array ~~~~~~~~~~~~~~~~~~~~~~~~~ %
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%
ds(1) = degtorad(24.6);
ds(2) = 0.40;
ds(3) = 0.39;
ds(4) = 0.0774/2;
ds(5) = 2.35;
ds(6) = 3.00;
ds(7) = 0.2750/2;
ds(8) = 5.43;
ds(9) = 6.29;
ds(10) = (0.1762/2)/cos(ds(1));
ds(11) = 0.66;
ds(12) = 0.61;
ds(13) = 0.1003/2;
ds(14) = 1e8;
ds(15) = 1e8;
ds(16) = 1e8;
ds(17) = 1e8;
ds(18) = 0;
ds(19) = 1e9;
ds(20) = 0;
ds(21) = 5e8;
ds(22) = (2*pi/60)*[0];
%% ~~~~~~~~~~~~~~~~~~~~~~~~~ Calculate Matrices ~~~~~~~~~~~~~~~~~~~~~~~~~ %
[q_std,Kcell_std,MM_std,radius_std] = gear_eigen (1,ds);
%% Simulate Model Properties
disp('Standard Eigenproblem Solution w^2*M*phi=K*phi');
% Natural Frequencies(Eigenvalues) & Mode Shapes(Eigenvectors)
[frqs_std] = eigenprob_KM (q_std,cell2mat(Kcell_std),MM_std,ds(22));
%% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ K Uncertainty ~~~~~~~~~~~~~~~~~~~~~~~~~~~ %
num = 1e2;
Kl=6e7; Ku=14e7; % lower and upper limits
Km = 1e8; % Planet bearing stiffness (mean value)
width = 1e5; % Interval width between values
STDEV = 10;
epsilon = normrnd(0,STDEV,num,1)/100;
K_eps = Km*(1+epsilon);
% K_eps = Kl+(Ku-Kl)*rand(num,1); % Method 2: uniform distribution
minK = min(K_eps);
maxK = max(K_eps);
dx = width; % Interval width for empirical PDF
centers = minK : dx : maxK; % Centre of Interval
edges = minK-dx/2 : dx : maxK+dx/2; % Edges of Interval
N = histcounts(K_eps,edges); % Count ocurrences of K
figure ('Name','Random Distribution')
subplot(1,2,1)
histogram(K_eps,centers) % Plot random values vs occurrency
axis([minK-dx maxK+dx 0 1.075*max(N)])
xlabel('Stiffness Value, \itK','FontSize',11)
ylabel('Frequency of Occurrence, \itn_{\rmi}','FontSize',11)
N = N(1:end); % Frequency of Occurrence n
Ni = [0 N 0];
Pri = Ni/(num*dx); %Rescale ordinate values to Pri
xi = minK-dx : dx : maxK+dx;
subplot(1,2,2)
plot(xi,Pri,'.r',xi,Pri,'b')
hold on
axis([minK-dx maxK+dx 0 1.075*max(Pri)])
xlabel('Stiffness Value, \itK','FontSize',11)
ylabel('Approximation of \itf_{\rmK}\rm(\itu\rm)','FontSize',11)
text(0.33,9.2,'MonteCarlo Simulation of Stiffness Uncertainty','FontSize' ,11)
legend('\itf_{\rmi}','Empirical pdf','location','eastoutside')
hold off
% edgeStart = 200;
% edgeEnd = 600;
% eds = edges(edgeStart:edgeEnd);
% % Empirical prob that K will fall between edgeStart and edgeEnd
% Pr = sum(Pri(edgeStart:edgeEnd))*dx;
% T_prob = table(edges(edgeStart),edges(edgeEnd),Pr);
% T_prob.Properties.VariableNames = {'IntervalStart' 'IntervalEnd' ...
% 'Probability'}
% Calculate Natural Frequencies
Fcell{length(K_eps)} = []; % Preallocate memory for cell array
Kcell{length(K_eps)} = []; % Preallocate memory for cell array;
syms x__s y__s u__s ...
x__r y__r u__r ...
x__c y__c u__c ...
zeta__1 eta__1 u__1 ...
zeta__2 eta__2 u__2 ...
zeta__3 eta__3 u__3
q = [x__s y__s u__s ...
x__r y__r u__r ...
x__c y__c u__c ...
zeta__1 eta__1 u__1 ...
zeta__2 eta__2 u__2 ...
zeta__3 eta__3 u__3 ];
alpha = ds(1);
m__s = ds(2);
m__ws = ds(3);
r__s = ds(4);
m__r = ds(5);
m__wr = ds(6);
r__r = ds(7);
m__c = ds(8);
m__wc = ds(9);
r__c = ds(10);
m__p = ds(11);
m__wp = ds(12);
r__p = ds(13);
k__r = ds(14);
k__s = ds(15);
k__c = ds(16);
k__cu = ds(18);
k__ru = ds(19);
k__su = ds(20);
k__m = ds(21);
Omega__c = ds(22);
radius = [ r__s 0 0 r__r 0 0 r__c 0 0 r__p ]; % Array of all radius
MM = [m__c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 m__c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 m__wc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 m__r 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 m__r 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 m__wr 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 m__s 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 m__s 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 m__ws 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 m__p 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 m__p 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 m__wp 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 m__p 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 m__p 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 m__wp 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 m__p 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 m__p 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 m__wp;];
%% ~~ Create Cell Array for K ~~~ %
for i = 1:(length(K_eps))
k__p = K_eps(i); % Random Value
%% N = 3
q = q(1:18);
KK = [-m__c * Omega__c ^ 2 + k__c + 3 * k__p 0 0 0 0 0 0 0 0 -k__p 0 0 k__p / 0.2e1 k__p * sqrt(0.3e1) / 0.2e1 0 k__p / 0.2e1 -k__p * sqrt(0.3e1) / 0.2e1 0; 0 -m__c * Omega__c ^ 2 + k__c + 3 * k__p 0 0 0 0 0 0 0 0 -k__p 0 -k__p * sqrt(0.3e1) / 0.2e1 k__p / 0.2e1 0 k__p * sqrt(0.3e1) / 0.2e1 k__p / 0.2e1 0; 0 0 3 * k__p + k__cu 0 0 0 0 0 0 0 -k__p 0 0 -k__p 0 0 -k__p 0; 0 0 0 k__m * cos(pi / 0.6e1 + alpha) ^ 2 - cos(pi / 0.3e1 + alpha) ^ 2 * k__m - cos(alpha) ^ 2 * k__m - (m__r * Omega__c ^ 2) + 0.2e1 * k__m + k__r sin(pi / 0.6e1 + alpha) * cos(pi / 0.6e1 + alpha) * k__m - k__m * sin(pi / 0.3e1 + alpha) * cos(pi / 0.3e1 + alpha) - cos(alpha) * sin(alpha) * k__m -cos(pi / 0.6e1 + alpha) * k__m + sin(pi / 0.3e1 + alpha) * k__m - sin(alpha) * k__m 0 0 0 cos(alpha) ^ 2 * k__m - k__m cos(alpha) * sin(alpha) * k__m sin(alpha) * k__m -cos(pi / 0.6e1 + alpha) * sin(alpha) * k__m cos(pi / 0.6e1 + alpha) * cos(alpha) * k__m cos(pi / 0.6e1 + alpha) * k__m sin(pi / 0.3e1 + alpha) * sin(alpha) * k__m -sin(pi / 0.3e1 + alpha) * cos(alpha) * k__m -sin(pi / 0.3e1 + alpha) * k__m; 0 0 0 sin(pi / 0.6e1 + alpha) * cos(pi / 0.6e1 + alpha) * k__m - k__m * sin(pi / 0.3e1 + alpha) * cos(pi / 0.3e1 + alpha) - cos(alpha) * sin(alpha) * k__m -k__m * cos(pi / 0.6e1 + alpha) ^ 2 + cos(pi / 0.3e1 + alpha) ^ 2 * k__m + cos(alpha) ^ 2 * k__m - (m__r * Omega__c ^ 2) + k__m + k__r -sin(pi / 0.6e1 + alpha) * k__m - cos(pi / 0.3e1 + alpha) * k__m + k__m * cos(alpha) 0 0 0 cos(alpha) * sin(alpha) * k__m -cos(alpha) ^ 2 * k__m -k__m * cos(alpha) -sin(pi / 0.6e1 + alpha) * sin(alpha) * k__m sin(pi / 0.6e1 + alpha) * cos(alpha) * k__m sin(pi / 0.6e1 + alpha) * k__m -cos(pi / 0.3e1 + alpha) * sin(alpha) * k__m cos(pi / 0.3e1 + alpha) * cos(alpha) * k__m cos(pi / 0.3e1 + alpha) * k__m; 0 0 0 -cos(pi / 0.6e1 + alpha) * k__m + sin(pi / 0.3e1 + alpha) * k__m - sin(alpha) * k__m -sin(pi / 0.6e1 + alpha) * k__m - cos(pi / 0.3e1 + alpha) * k__m + k__m * cos(alpha) 0.3e1 * k__m + k__ru 0 0 0 sin(alpha) * k__m -k__m * cos(alpha) -k__m sin(alpha) * k__m -k__m * cos(alpha) -k__m sin(alpha) * k__m -k__m * cos(alpha) -k__m; 0 0 0 0 0 0 k__m * cos(pi / 0.6e1 + alpha) ^ 2 - cos(pi / 0.3e1 + alpha) ^ 2 * k__m - cos(alpha) ^ 2 * k__m - (m__s * Omega__c ^ 2) + 0.2e1 * k__m + k__s -sin(pi / 0.6e1 + alpha) * cos(pi / 0.6e1 + alpha) * k__m + k__m * sin(pi / 0.3e1 + alpha) * cos(pi / 0.3e1 + alpha) + cos(alpha) * sin(alpha) * k__m cos(pi / 0.6e1 + alpha) * k__m - sin(pi / 0.3e1 + alpha) * k__m + sin(alpha) * k__m cos(alpha) ^ 2 * k__m - k__m -cos(alpha) * sin(alpha) * k__m sin(alpha) * k__m sin(pi / 0.3e1 + alpha) * sin(alpha) * k__m sin(pi / 0.3e1 + alpha) * cos(alpha) * k__m -sin(pi / 0.3e1 + alpha) * k__m -cos(pi / 0.6e1 + alpha) * sin(alpha) * k__m -cos(pi / 0.6e1 + alpha) * cos(alpha) * k__m cos(pi / 0.6e1 + alpha) * k__m; 0 0 0 0 0 0 -sin(pi / 0.6e1 + alpha) * cos(pi / 0.6e1 + alpha) * k__m + k__m * sin(pi / 0.3e1 + alpha) * cos(pi / 0.3e1 + alpha) + cos(alpha) * sin(alpha) * k__m -k__m * cos(pi / 0.6e1 + alpha) ^ 2 + cos(pi / 0.3e1 + alpha) ^ 2 * k__m + cos(alpha) ^ 2 * k__m - (m__s * Omega__c ^ 2) + k__m + k__s -sin(pi / 0.6e1 + alpha) * k__m - cos(pi / 0.3e1 + alpha) * k__m + k__m * cos(alpha) -cos(alpha) * sin(alpha) * k__m -cos(alpha) ^ 2 * k__m k__m * cos(alpha) cos(pi / 0.3e1 + alpha) * sin(alpha) * k__m cos(pi / 0.3e1 + alpha) * cos(alpha) * k__m -cos(pi / 0.3e1 + alpha) * k__m sin(pi / 0.6e1 + alpha) * sin(alpha) * k__m sin(pi / 0.6e1 + alpha) * cos(alpha) * k__m -sin(pi / 0.6e1 + alpha) * k__m; 0 0 0 0 0 0 cos(pi / 0.6e1 + alpha) * k__m - sin(pi / 0.3e1 + alpha) * k__m + sin(alpha) * k__m -sin(pi / 0.6e1 + alpha) * k__m - cos(pi / 0.3e1 + alpha) * k__m + k__m * cos(alpha) 0.3e1 * k__m + k__su -sin(alpha) * k__m -k__m * cos(alpha) k__m -sin(alpha) * k__m -k__m * cos(alpha) k__m -sin(alpha) * k__m -k__m * cos(alpha) k__m; -k__p 0 0 cos(alpha) ^ 2 * k__m - k__m cos(alpha) * sin(alpha) * k__m sin(alpha) * k__m cos(alpha) ^ 2 * k__m - k__m -cos(alpha) * sin(alpha) * k__m -sin(alpha) * k__m -0.2e1 * cos(alpha) ^ 2 * k__m - (m__p * Omega__c ^ 2) + 0.2e1 * k__m + k__p 0 -0.2e1 * sin(alpha) * k__m 0 0 0 0 0 0; 0 -k__p -k__p cos(alpha) * sin(alpha) * k__m -cos(alpha) ^ 2 * k__m -k__m * cos(alpha) -cos(alpha) * sin(alpha) * k__m -cos(alpha) ^ 2 * k__m -k__m * cos(alpha) 0 0.2e1 * cos(alpha) ^ 2 * k__m - (m__p * Omega__c ^ 2) + k__p 0 0 0 0 0 0 0; 0 0 0 sin(alpha) * k__m -k__m * cos(alpha) -k__m sin(alpha) * k__m k__m * cos(alpha) k__m -0.2e1 * sin(alpha) * k__m 0 0.2e1 * k__m 0 0 0 0 0 0; k__p / 0.2e1 -k__p * sqrt(0.3e1) / 0.2e1 0 -cos(pi / 0.6e1 + alpha) * sin(alpha) * k__m -sin(pi / 0.6e1 + alpha) * sin(alpha) * k__m sin(alpha) * k__m sin(pi / 0.3e1 + alpha) * sin(alpha) * k__m cos(pi / 0.3e1 + alpha) * sin(alpha) * k__m -sin(alpha) * k__m 0 0 0 -0.2e1 * cos(alpha) ^ 2 * k__m - (m__p * Omega__c ^ 2) + 0.2e1 * k__m + k__p 0 -0.2e1 * sin(alpha) * k__m 0 0 0; k__p * sqrt(0.3e1) / 0.2e1 k__p / 0.2e1 -k__p cos(pi / 0.6e1 + alpha) * cos(alpha) * k__m sin(pi / 0.6e1 + alpha) * cos(alpha) * k__m -k__m * cos(alpha) sin(pi / 0.3e1 + alpha) * cos(alpha) * k__m cos(pi / 0.3e1 + alpha) * cos(alpha) * k__m -k__m * cos(alpha) 0 0 0 0 0.2e1 * cos(alpha) ^ 2 * k__m - (m__p * Omega__c ^ 2) + k__p 0 0 0 0; 0 0 0 cos(pi / 0.6e1 + alpha) * k__m sin(pi / 0.6e1 + alpha) * k__m -k__m -sin(pi / 0.3e1 + alpha) * k__m -cos(pi / 0.3e1 + alpha) * k__m k__m 0 0 0 -0.2e1 * sin(alpha) * k__m 0 0.2e1 * k__m 0 0 0; k__p / 0.2e1 k__p * sqrt(0.3e1) / 0.2e1 0 sin(pi / 0.3e1 + alpha) * sin(alpha) * k__m -cos(pi / 0.3e1 + alpha) * sin(alpha) * k__m sin(alpha) * k__m -cos(pi / 0.6e1 + alpha) * sin(alpha) * k__m sin(pi / 0.6e1 + alpha) * sin(alpha) * k__m -sin(alpha) * k__m 0 0 0 0 0 0 -0.2e1 * cos(alpha) ^ 2 * k__m - (m__p * Omega__c ^ 2) + 0.2e1 * k__m + k__p 0 -0.2e1 * sin(alpha) * k__m; -k__p * sqrt(0.3e1) / 0.2e1 k__p / 0.2e1 -k__p -sin(pi / 0.3e1 + alpha) * cos(alpha) * k__m cos(pi / 0.3e1 + alpha) * cos(alpha) * k__m -k__m * cos(alpha) -cos(pi / 0.6e1 + alpha) * cos(alpha) * k__m sin(pi / 0.6e1 + alpha) * cos(alpha) * k__m -k__m * cos(alpha) 0 0 0 0 0 0 0 0.2e1 * cos(alpha) ^ 2 * k__m - (m__p * Omega__c ^ 2) + k__p 0; 0 0 0 -sin(pi / 0.3e1 + alpha) * k__m cos(pi / 0.3e1 + alpha) * k__m -k__m cos(pi / 0.6e1 + alpha) * k__m -sin(pi / 0.6e1 + alpha) * k__m k__m 0 0 0 0 0 0 -0.2e1 * sin(alpha) * k__m 0 0.2e1 * k__m;];
Kcell{i} = KK; % Save each KK in Kcell array
[frqs_KM] = eigenprob_KM (q_std,cell2mat(Kcell(i)),MM,ds(22));
Fcell{i} = real(frqs_KM);
end % for
Fmat = cell2mat(Fcell);
for i = 1 : length(q_std)
figure('Name','Natural Frequency with Uncertainty');
NatFrqs = Fmat (i,:);
s = scatter ( epsilon,NatFrqs', 20,'b','filled');
s.LineWidth = 0.6;
s.MarkerEdgeColor = 'b';
s.MarkerFaceColor = [0 0.5 0.5];
Fmat = cell2mat(Fcell);
xlabel('\bf \epsilon \sim N(\mu,\sigma)','FontSize',14)
ylabel('\bf Natural Frequency, \omega_{n}','FontSize',14)
set(gca,'yaxislocation','right');
title(sprintf('Designated Natural Frequency [Hz] = %f', ...
round(frqs_std(i),2)));
ax = gca;
ax.YAxisLocation = 'origin'; % setting y axis location to origin
grid on
hold on
end % for
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Functions ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%
%% ~~~~~~~~~~~~~~~ Calculate Eigen-Problem for N Planets ~~~~~~~~~~~~~~~~ %
function [q,Kcell,MM,radius] = gear_eigen (randomvar,data)
%% ~~~~~~~~~~~~~~~~~~~~~~ Define Simulation data ~~~~~~~~~~~~~~~~~~~~~~~~ %
syms x__s y__s u__s ...
x__r y__r u__r ...
x__c y__c u__c ...
zeta__1 eta__1 u__1 ...
zeta__2 eta__2 u__2 ...
zeta__3 eta__3 u__3
q = [x__s y__s u__s ...
x__r y__r u__r ...
x__c y__c u__c ...
zeta__1 eta__1 u__1 ...
zeta__2 eta__2 u__2 ...
zeta__3 eta__3 u__3 ];
alpha = data(1);
m__s = data(2);
m__ws = data(3);
r__s = data(4);
m__r = data(5);
m__wr = data(6);
r__r = data(7);
m__c = data(8);
m__wc = data(9);
r__c = data(10);
m__p = data(11);
m__wp = data(12);
r__p = data(13);
k__r = data(14);
k__s = data(15);
k__c = data(16);
k__p = data(17);
k__cu = data(18);
k__ru = data(19);
k__su = data(20);
k__m = data(21);
Omega__c = data(22);
radius = [ r__s 0 0 r__r 0 0 r__c 0 0 r__p ]; % Array of all radius
Kcell{length(randomvar)} = []; % Preallocate memory for cell array;
%% ~~ Create Cell Array for K ~~~ %
for i = 1:(randomvar)
%% N = 3
q = q(1:18);
KK = [-m__c * Omega__c ^ 2 + k__c + 3 * k__p 0 0 0 0 0 0 0 0 -k__p 0 0 k__p / 0.2e1 k__p * sqrt(0.3e1) / 0.2e1 0 k__p / 0.2e1 -k__p * sqrt(0.3e1) / 0.2e1 0; 0 -m__c * Omega__c ^ 2 + k__c + 3 * k__p 0 0 0 0 0 0 0 0 -k__p 0 -k__p * sqrt(0.3e1) / 0.2e1 k__p / 0.2e1 0 k__p * sqrt(0.3e1) / 0.2e1 k__p / 0.2e1 0; 0 0 3 * k__p + k__cu 0 0 0 0 0 0 0 -k__p 0 0 -k__p 0 0 -k__p 0; 0 0 0 k__m * cos(pi / 0.6e1 + alpha) ^ 2 - cos(pi / 0.3e1 + alpha) ^ 2 * k__m - cos(alpha) ^ 2 * k__m - (m__r * Omega__c ^ 2) + 0.2e1 * k__m + k__r sin(pi / 0.6e1 + alpha) * cos(pi / 0.6e1 + alpha) * k__m - k__m * sin(pi / 0.3e1 + alpha) * cos(pi / 0.3e1 + alpha) - cos(alpha) * sin(alpha) * k__m -cos(pi / 0.6e1 + alpha) * k__m + sin(pi / 0.3e1 + alpha) * k__m - sin(alpha) * k__m 0 0 0 cos(alpha) ^ 2 * k__m - k__m cos(alpha) * sin(alpha) * k__m sin(alpha) * k__m -cos(pi / 0.6e1 + alpha) * sin(alpha) * k__m cos(pi / 0.6e1 + alpha) * cos(alpha) * k__m cos(pi / 0.6e1 + alpha) * k__m sin(pi / 0.3e1 + alpha) * sin(alpha) * k__m -sin(pi / 0.3e1 + alpha) * cos(alpha) * k__m -sin(pi / 0.3e1 + alpha) * k__m; 0 0 0 sin(pi / 0.6e1 + alpha) * cos(pi / 0.6e1 + alpha) * k__m - k__m * sin(pi / 0.3e1 + alpha) * cos(pi / 0.3e1 + alpha) - cos(alpha) * sin(alpha) * k__m -k__m * cos(pi / 0.6e1 + alpha) ^ 2 + cos(pi / 0.3e1 + alpha) ^ 2 * k__m + cos(alpha) ^ 2 * k__m - (m__r * Omega__c ^ 2) + k__m + k__r -sin(pi / 0.6e1 + alpha) * k__m - cos(pi / 0.3e1 + alpha) * k__m + k__m * cos(alpha) 0 0 0 cos(alpha) * sin(alpha) * k__m -cos(alpha) ^ 2 * k__m -k__m * cos(alpha) -sin(pi / 0.6e1 + alpha) * sin(alpha) * k__m sin(pi / 0.6e1 + alpha) * cos(alpha) * k__m sin(pi / 0.6e1 + alpha) * k__m -cos(pi / 0.3e1 + alpha) * sin(alpha) * k__m cos(pi / 0.3e1 + alpha) * cos(alpha) * k__m cos(pi / 0.3e1 + alpha) * k__m; 0 0 0 -cos(pi / 0.6e1 + alpha) * k__m + sin(pi / 0.3e1 + alpha) * k__m - sin(alpha) * k__m -sin(pi / 0.6e1 + alpha) * k__m - cos(pi / 0.3e1 + alpha) * k__m + k__m * cos(alpha) 0.3e1 * k__m + k__ru 0 0 0 sin(alpha) * k__m -k__m * cos(alpha) -k__m sin(alpha) * k__m -k__m * cos(alpha) -k__m sin(alpha) * k__m -k__m * cos(alpha) -k__m; 0 0 0 0 0 0 k__m * cos(pi / 0.6e1 + alpha) ^ 2 - cos(pi / 0.3e1 + alpha) ^ 2 * k__m - cos(alpha) ^ 2 * k__m - (m__s * Omega__c ^ 2) + 0.2e1 * k__m + k__s -sin(pi / 0.6e1 + alpha) * cos(pi / 0.6e1 + alpha) * k__m + k__m * sin(pi / 0.3e1 + alpha) * cos(pi / 0.3e1 + alpha) + cos(alpha) * sin(alpha) * k__m cos(pi / 0.6e1 + alpha) * k__m - sin(pi / 0.3e1 + alpha) * k__m + sin(alpha) * k__m cos(alpha) ^ 2 * k__m - k__m -cos(alpha) * sin(alpha) * k__m sin(alpha) * k__m sin(pi / 0.3e1 + alpha) * sin(alpha) * k__m sin(pi / 0.3e1 + alpha) * cos(alpha) * k__m -sin(pi / 0.3e1 + alpha) * k__m -cos(pi / 0.6e1 + alpha) * sin(alpha) * k__m -cos(pi / 0.6e1 + alpha) * cos(alpha) * k__m cos(pi / 0.6e1 + alpha) * k__m; 0 0 0 0 0 0 -sin(pi / 0.6e1 + alpha) * cos(pi / 0.6e1 + alpha) * k__m + k__m * sin(pi / 0.3e1 + alpha) * cos(pi / 0.3e1 + alpha) + cos(alpha) * sin(alpha) * k__m -k__m * cos(pi / 0.6e1 + alpha) ^ 2 + cos(pi / 0.3e1 + alpha) ^ 2 * k__m + cos(alpha) ^ 2 * k__m - (m__s * Omega__c ^ 2) + k__m + k__s -sin(pi / 0.6e1 + alpha) * k__m - cos(pi / 0.3e1 + alpha) * k__m + k__m * cos(alpha) -cos(alpha) * sin(alpha) * k__m -cos(alpha) ^ 2 * k__m k__m * cos(alpha) cos(pi / 0.3e1 + alpha) * sin(alpha) * k__m cos(pi / 0.3e1 + alpha) * cos(alpha) * k__m -cos(pi / 0.3e1 + alpha) * k__m sin(pi / 0.6e1 + alpha) * sin(alpha) * k__m sin(pi / 0.6e1 + alpha) * cos(alpha) * k__m -sin(pi / 0.6e1 + alpha) * k__m; 0 0 0 0 0 0 cos(pi / 0.6e1 + alpha) * k__m - sin(pi / 0.3e1 + alpha) * k__m + sin(alpha) * k__m -sin(pi / 0.6e1 + alpha) * k__m - cos(pi / 0.3e1 + alpha) * k__m + k__m * cos(alpha) 0.3e1 * k__m + k__su -sin(alpha) * k__m -k__m * cos(alpha) k__m -sin(alpha) * k__m -k__m * cos(alpha) k__m -sin(alpha) * k__m -k__m * cos(alpha) k__m; -k__p 0 0 cos(alpha) ^ 2 * k__m - k__m cos(alpha) * sin(alpha) * k__m sin(alpha) * k__m cos(alpha) ^ 2 * k__m - k__m -cos(alpha) * sin(alpha) * k__m -sin(alpha) * k__m -0.2e1 * cos(alpha) ^ 2 * k__m - (m__p * Omega__c ^ 2) + 0.2e1 * k__m + k__p 0 -0.2e1 * sin(alpha) * k__m 0 0 0 0 0 0; 0 -k__p -k__p cos(alpha) * sin(alpha) * k__m -cos(alpha) ^ 2 * k__m -k__m * cos(alpha) -cos(alpha) * sin(alpha) * k__m -cos(alpha) ^ 2 * k__m -k__m * cos(alpha) 0 0.2e1 * cos(alpha) ^ 2 * k__m - (m__p * Omega__c ^ 2) + k__p 0 0 0 0 0 0 0; 0 0 0 sin(alpha) * k__m -k__m * cos(alpha) -k__m sin(alpha) * k__m k__m * cos(alpha) k__m -0.2e1 * sin(alpha) * k__m 0 0.2e1 * k__m 0 0 0 0 0 0; k__p / 0.2e1 -k__p * sqrt(0.3e1) / 0.2e1 0 -cos(pi / 0.6e1 + alpha) * sin(alpha) * k__m -sin(pi / 0.6e1 + alpha) * sin(alpha) * k__m sin(alpha) * k__m sin(pi / 0.3e1 + alpha) * sin(alpha) * k__m cos(pi / 0.3e1 + alpha) * sin(alpha) * k__m -sin(alpha) * k__m 0 0 0 -0.2e1 * cos(alpha) ^ 2 * k__m - (m__p * Omega__c ^ 2) + 0.2e1 * k__m + k__p 0 -0.2e1 * sin(alpha) * k__m 0 0 0; k__p * sqrt(0.3e1) / 0.2e1 k__p / 0.2e1 -k__p cos(pi / 0.6e1 + alpha) * cos(alpha) * k__m sin(pi / 0.6e1 + alpha) * cos(alpha) * k__m -k__m * cos(alpha) sin(pi / 0.3e1 + alpha) * cos(alpha) * k__m cos(pi / 0.3e1 + alpha) * cos(alpha) * k__m -k__m * cos(alpha) 0 0 0 0 0.2e1 * cos(alpha) ^ 2 * k__m - (m__p * Omega__c ^ 2) + k__p 0 0 0 0; 0 0 0 cos(pi / 0.6e1 + alpha) * k__m sin(pi / 0.6e1 + alpha) * k__m -k__m -sin(pi / 0.3e1 + alpha) * k__m -cos(pi / 0.3e1 + alpha) * k__m k__m 0 0 0 -0.2e1 * sin(alpha) * k__m 0 0.2e1 * k__m 0 0 0; k__p / 0.2e1 k__p * sqrt(0.3e1) / 0.2e1 0 sin(pi / 0.3e1 + alpha) * sin(alpha) * k__m -cos(pi / 0.3e1 + alpha) * sin(alpha) * k__m sin(alpha) * k__m -cos(pi / 0.6e1 + alpha) * sin(alpha) * k__m sin(pi / 0.6e1 + alpha) * sin(alpha) * k__m -sin(alpha) * k__m 0 0 0 0 0 0 -0.2e1 * cos(alpha) ^ 2 * k__m - (m__p * Omega__c ^ 2) + 0.2e1 * k__m + k__p 0 -0.2e1 * sin(alpha) * k__m; -k__p * sqrt(0.3e1) / 0.2e1 k__p / 0.2e1 -k__p -sin(pi / 0.3e1 + alpha) * cos(alpha) * k__m cos(pi / 0.3e1 + alpha) * cos(alpha) * k__m -k__m * cos(alpha) -cos(pi / 0.6e1 + alpha) * cos(alpha) * k__m sin(pi / 0.6e1 + alpha) * cos(alpha) * k__m -k__m * cos(alpha) 0 0 0 0 0 0 0 0.2e1 * cos(alpha) ^ 2 * k__m - (m__p * Omega__c ^ 2) + k__p 0; 0 0 0 -sin(pi / 0.3e1 + alpha) * k__m cos(pi / 0.3e1 + alpha) * k__m -k__m cos(pi / 0.6e1 + alpha) * k__m -sin(pi / 0.6e1 + alpha) * k__m k__m 0 0 0 0 0 0 -0.2e1 * sin(alpha) * k__m 0 0.2e1 * k__m;];
MM = [m__c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 m__c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 m__wc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 m__r 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 m__r 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 m__wr 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 m__s 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 m__s 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 m__ws 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 m__p 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 m__p 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 m__wp 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 m__p 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 m__p 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 m__wp 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 m__p 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 m__p 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 m__wp;];
Kcell{i} = KK; % Save each KK in Kcell array
end % for
end % function
%% ~~~~~ Function for Calculating Natural Frequencies & Modes (MDoF) ~~~~ %
%~~~~~~~~~~~~~~~~~~~~~~~ WITH 'K' AND 'M' MATRICES ~~~~~~~~~~~~~~~~~~~~~~~%
function [natural_freq] = eigenprob_KM(q,K,M,w)
%% Compute Eigenvectors 'V' and Eigenvalues 'D'
[V,D] = eig(K,M);
D = diag(sqrtm(D));
frq = (D);
[frq_sorted,index] = sort(frq,'ascend'); % Sort frq values
mode_shape_sorted = V(:,index); % Mode Shapes for each Natural Frequency
natural_freq = frq_sorted/(2*pi); % Natural Frequencies for each DoF
end % function
它自己的类别(而不是三个类别),那么如果您希望如何表示数据,那就没问题了。在这种情况下,您可以按原样保留数据,因为H2O会自动对引擎下的分类列进行单热编码,只要它们被编码为因子(也称为枚举)类型即可。假设您的数据框只是这三行,那么会有三个类别:1,2,3
,1,2,3
和1,4
。
如果1,2
中的1,2,3
值表示第1行与三个独立的独立类别相关联,那么您应该用C二进制指示符列手动替换col2
,其中C是类别总数。同样,如果这三行代表您的整个数据框,那么您将col2
替换为四列。您的新数据框将如下所示:
col2