由于我是编程新手,我想知道是否可以使用nltk内置电影评论数据集通过使用KNN来确定数据的极性来进行情绪分析?有没有办法这样做?
import nltk
from nltk.corpus import movie_reviews
from nltk.tokenize import word_tokenize
documents = [(list(movie_reviews.words(fileid)), category)
for category in movie_reviews.categories()
for fileid in movie_reviews.fileids(category)]
all_words = []
for w in movie_reviews.words():
all_words.append(w.lower())
all_words = nltk.FreqDist(all_words)
word_features = list(all_words.keys())[:3000]
def find_features(document):
words = set(document)
features = {}
for w in word_features:
features[w] = (w in words)
return features
featuresets = [(find_features(rev), category) for (rev, category) in documents]
training_set = featuresets[500:1500]
testing_set = featuresets[:1500]
classifier = nltk.DecisionTreeClassifier.train(training_set)
print "Classifier accuracy percent:",(nltk.classify.accuracy(classifier, testing_set))*100 , "%"
string = raw_input("Enter the string: ")
print (classifier.classify(find_features(word_tokenize(string))))
我正在尝试将上面的代码从决策树转换为KNN