我正在尝试将自己的3D数据提供给LSTM。数据有:height = 365,width = 310,time = unknown / inconsistent,由0和1组成,每个产生输出的数据块都被分成一个文件。
import tensorflow as tf
import os
from tensorflow.contrib import rnn
filename = "C:/Kuliah/EmotionRecognition/Train1/D2N2Sur.txt"
hm_epochs = 10
n_classes = 12
n_chunk = 443
n_hidden = 500
data = tf.placeholder(tf.bool, name='data')
cat = tf.placeholder("float", [None, n_classes])
weights = {
'out': tf.Variable(tf.random_normal([n_hidden, n_classes]))
}
biases = {
'out': tf.Variable(tf.random_normal([n_classes]))
}
def RNN(x, weights, biases):
lstm_cell = rnn.BasicLSTMCell(n_hidden, forget_bias=1.0)
outputs, states = rnn.static_rnn(lstm_cell, x, dtype=tf.float32)
return tf.matmul(outputs[-1], weights['out']) + biases['out']
pred = RNN(data, weights, biases)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=cat))
optimizer = tf.train.AdamOptimizer(learning_rate=0.001).minimize(cost)
correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(cat, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
saver = tf.train.Saver()
temp = [[]]
d3 = [[]]
counter = 0
with tf.Session() as sess:
#load
#saver.restore(sess, "C:/Kuliah/EmotionRecognition/model.ckpt")
sess.run(tf.global_variables_initializer())
with open(filename) as inf:
for line in inf:
bla = list(line)
bla.pop(len(bla) - 1)
for index, item in enumerate(bla):
if (item == '0'):
bla[index] = False
else:
bla[index] = True
temp.append(bla)
counter += 1
if counter%365==0: #height 365
temp.pop(0)
d3.append(temp)
temp = [[]]
temp.pop(0)
d3.append(temp)
batch_data = d3.reshape()
sess.run(optimizer, feed_dict={data: d3, cat: 11})
acc = sess.run(accuracy, feed_dict={data: d3, cat: 11})
loss = sess.run(loss, feed_dict={data: d3, cat: 11})
print(acc)
print(loss)
#save
saver.save(sess, "C:/Kuliah/EmotionRecognition/model.ckpt")
这段代码给我一个错误:
Traceback (most recent call last):
File "C:/Kuliah/EmotionRecognition/Main", line 31, in <module>
pred = RNN(data, weights, biases)
File "C:/Kuliah/EmotionRecognition/Main", line 28, in RNN
outputs, states = rnn.static_rnn(lstm_cell, x, dtype=tf.float32)
File "C:\Users\Anonymous\AppData\Roaming\Python\Python35\site-packages\tensorflow\python\ops\rnn.py", line 1119, in static_rnn
raise TypeError("inputs must be a sequence")
TypeError: inputs must be a sequence
答案 0 :(得分:5)
当您致电None
时,pred = RNN(data, weights, biases)
参数应该是RNN长度的序列。但在你的情况下,它是data
。
您可以尝试data = tf.placeholder(tf.bool, name='data')
。
请参阅方法的字符串doc:
输入:输入的长度为T的列表,每个输入为
pred = RNN([data], weights, biases)
形状Tensor
,或这些元素的嵌套元组。
如果您的RNN长度未知,则应考虑使用tf.nn.dynamic_rnn
。