Metrics vs Events

时间:2017-06-15 09:44:07

标签: database events time-series metrics

We are in the process of evaluating time series databases (TSDB) for our project.

My use case is to store historical events emanating from various sensors. The events can contain one or more attributes of different data types(e.g., strings, float, int etc).

As part of this evaluation exercise we came across few online materials where people say that certain type of TSDBs are suitable for metric stores, certain types are suitable for ,event stores and certain others are for both. Am a bit confused about the differences between metrics and events. Aren't metrics some kind of events? Can someone please help in understanding the difference in this context?

1 个答案:

答案 0 :(得分:0)

度量标准和事件是两种不同类型的时间序列数据:分别为规则和不规则。常规数据(指标)在时间上均匀分布,可用于诸如预测之类的过程。不规则数据(事件)是无法预测的,尽管它们仍按时间顺序发生,但事件之间的间隔不一致,这意味着使用它们进行预测或平均可能导致结果不可靠。

基本区别是指标定期发生,而事件则不定期发生。想象一下,我正在监视我的个人网站-我想跟踪响应代码以确保该站点可用,因此我会定期收集它们。然后,我可以查询那些响应代码指标,以弄清我的网站关闭的时间百分比(因为它太受欢迎了)。但我也想知道用户何时点击广告。我不知道该点击何时或是否会发生,因此定期收集是没有意义的。如果过去一年中我有12次点击,那么无论他们是否都可能在10月(我的知名度最高)发生一次,平均每月都会有1次点击。