在诗人的张量流中,有一个名为label_image.py
的脚本,它采用单个图像并根据概率吐出5个预测。有没有办法给它一个完整的图像文件夹,并要求它可以在文本文件中逐个存储预测?
指向文件的链接 - https://codelabs.developers.google.com/codelabs/tensorflow-for-poets/#5
答案 0 :(得分:2)
我试过这个并且对我很好。以下是您可能想要尝试的代码。如果您需要非常具体的内容,可以进行更改。
import os, sys
import glob
import tensorflow as tf
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
# change this as you see fit
image_path = sys.argv[1]
extension = ['*.jpeg', '*.jpg']
files=[]
for e in extension:
directory = os.path.join(image_path, e)
fileList = glob.glob(directory)
for f in fileList:
files.append(f)
# Loads label file, strips off carriage return
label_lines = [line.rstrip() for line
in tf.gfile.GFile("/path_to_file/retrained_labels.txt")]
# Unpersists graph from file
with tf.gfile.FastGFile("/path_to_file/retrained_graph.pb", 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
tf.import_graph_def(graph_def, name='')
with tf.Session() as sess:
# Feed the image_data as input to the graph and get first prediction
softmax_tensor = sess.graph.get_tensor_by_name('final_result:0')
# Read in the image_data
for file in files:
image_data = tf.gfile.FastGFile(file, 'rb').read()
predictions = sess.run(softmax_tensor, \
{'DecodeJpeg/contents:0': image_data})
# Sort to show labels of first prediction in order of confidence
top_k = predictions[0].argsort()[-len(predictions[0]):][::-1]
print("Image Name: " + file)
for node_id in top_k:
human_string = label_lines[node_id]
score = predictions[0][node_id]
print('%s (score = %.5f)' % (human_string, score))