pandas:如何在按列分组后得到第一个正数?

时间:2017-05-17 14:41:26

标签: python-3.x pandas numpy

我有一个pandas数据框,如:

      a    b   id
1    10    6    1
2     6   -3    1
3    -3   12    1 # First time id 1 has a b value over 10
4     4   23    2 # First time id 2 has a b value over 10 
5    12   11    2  
6     3   -5    2

如何创建一个新的数据框,它首先获取id列,然后第一次获取列b超过10,以便结果如下所示:

      a    b   id
1    -3   12    1
2     4   23    2  

我有一个包含2,000,000行和大约10,000 id个值的数据帧,因此for循环非常慢。

3 个答案:

答案 0 :(得分:4)

先使用快速boolean indexing进行过滤,然后使用groupby + first

df = df[df['b'] > 10].groupby('id', as_index=False).first()
print (df)
   id  a   b
0   1 -3  12
1   2  4  23

如果某些组中的值不是10,则解决方案有点复杂 - 需要使用duplicated展开掩码:

print (df)
    a   b  id
1   7   6   3 <- no value b>10 for id=3
1  10   6   1
2   6  -3   1
3  -3  12   1
4   4  23   2
5  12  11   2
6   3  -5   2

mask = ~df['id'].duplicated(keep=False) | (df['b'] > 10)
df = df[mask].groupby('id', as_index=False).first()
print (df)
   id  a   b
0   1 -3  12
1   2  4  23
2   3  7   6

<强>计时

#[2000000 rows x 3 columns]
np.random.seed(123)
N = 2000000
df = pd.DataFrame({'id': np.random.randint(10000, size=N),
                   'a':np.random.randint(10, size=N),
                   'b':np.random.randint(15, size=N)})
#print (df)


In [284]: %timeit (df[df['b'] > 10].groupby('id', as_index=False).first())
10 loops, best of 3: 67.6 ms per loop

In [285]: %timeit (df.query("b > 10").groupby('id').head(1))
10 loops, best of 3: 107 ms per loop

In [286]: %timeit (df[df['b'] > 10].groupby('id').head(1))
10 loops, best of 3: 90 ms per loop

In [287]: %timeit df.query("b > 10").groupby('id', as_index=False).first()
10 loops, best of 3: 83.3 ms per loop

#without sorting a bit faster
In [288]: %timeit (df[df['b'] > 10].groupby('id', as_index=False, sort=False).first())
10 loops, best of 3: 62.9 ms per loop

答案 1 :(得分:4)

In [146]: df.query("b > 10").groupby('id').head(1)
Out[146]:
   a   b  id
3 -3  12   1
4  4  23   2

答案 2 :(得分:1)

对于最后一列被排序的情况,这是使用np.searchsorted的NumPy解决方案 -

def numpy_searchsorted(df, thresh=10):
    a = df.values
    m = a[:,1] > thresh
    mask_idx = np.flatnonzero(m)

    b = a[mask_idx,2]
    unq_ids = b[np.concatenate(( [True], b[1:] != b[:-1] ))]
    idx = np.searchsorted(b, unq_ids)
    out = a[mask_idx[idx]]
    return pd.DataFrame(out, columns = df.columns)

运行时测试 -

In [2]: np.random.seed(123)
   ...: N = 2000000
   ...: df = pd.DataFrame({'id': np.sort(np.random.randint(10000, size=N)),
   ...:                    'a':np.random.randint(10, size=N),
   ...:                    'b':np.random.randint(15, size=N)})
   ...: 

# @MaxU's soln
In [3]: %timeit df.query("b > 10").groupby('id').head(1)
10 loops, best of 3: 44.8 ms per loop

# @jezrael's best soln that assumes last col as sorted too
In [4]: %timeit (df[df['b'] > 10].groupby('id', as_index=False, sort=False).first())
10 loops, best of 3: 30.1 ms per loop

# Proposed in this post
In [5]: %timeit numpy_searchsorted(df)
100 loops, best of 3: 12.6 ms per loop