我在使用python测试之前用一些训练数据做了一个小小的情节。我的情节现在看起来像这样。训练数据来自傅里叶空间中的字母图像,我已将其掩盖以产生不同的字母值。
这些边界看起来不太理想,我不知道如何修复它们,以便红点和蓝点有自己独特的区域。这是我正在使用的代码:
X = np.matrix(X)
#knn = KNeighborsClassifier(n_neighbors=3)
y = [0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2]
h = 0.2 # step size in the mesh
# Create color maps
cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF'])
cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF'])
n_neighbors = 10
for weights in ['uniform', 'distance']:
# we create an instance of Neighbours Classifier and fit the data.
clf = KNeighborsClassifier(n_neighbors, weights=weights)
clf.fit(X, y)
# Plot the decision boundary. For that, we will assign a color to each
# point in the mesh [x_min, x_max]x[y_min, y_max].
x_min, x_max = X[:, 0].min() - 30, X[:, 0].max() + 20
y_min, y_max = X[:, 1].min() - 5, X[:, 1].max() + 5
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
np.arange(y_min, y_max, h))
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.figure()
plt.pcolormesh(xx, yy, Z, cmap=cmap_light)
# Plot also the training points
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold)
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.title("3-Class classification (k = %i, weights = '%s')"
% (n_neighbors, weights))
plt.show()
是否需要找到不同的数据点来对我的数据进行分类?或者有没有办法改变这些决策边界的形成方式?任何帮助将不胜感激,如果我对某些事情过于模糊,请告诉我。提前谢谢!