我使用list comprehension vs concurrent.futures测试一个简单的函数:
func tableView(_ tableView: UITableView,
didSelectRowAt indexPath: IndexPath)
{
}
测量时间,我得到:
class Test:
@staticmethod
def something(times = 1):
return sum([1 for i in range(times)])
@staticmethod
def simulate1(function, N):
l = []
for i in range(N):
outcome = function()
l.append(outcome)
return sum(l) / N
@staticmethod
def simulate2(function, N):
import concurrent.futures
with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor:
l = [outcome for outcome in executor.map(lambda x: function(), range(N))]
return sum(l) / N
@staticmethod
def simulate3(function, N):
import concurrent.futures
l = 0
with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor:
futures = [executor.submit(function) for i in range(N)]
for future in concurrent.futures.as_completed(futures):
l += future.result()
return l / N
def simulation():
simulationRate = 100000
import datetime
s = datetime.datetime.now()
o = Test.simulate1(lambda : Test.something(10), simulationRate)
print((datetime.datetime.now() - s))
s = datetime.datetime.now()
o = Test.simulate2(lambda : Test.something(10), simulationRate)
print((datetime.datetime.now() - s))
s = datetime.datetime.now()
o = Test.simulate3(lambda : Test.something(10), simulationRate)
print((datetime.datetime.now() - s))
simulation()
我开始使用并发性,所以我不明白阻止线程运行得更快的瓶颈是什么。
答案 0 :(得分:0)
如果您将任务功能更改为此,您将看到差异:
def something(n):
""" simulate doing some io based task.
"""
time.sleep(0.001)
return sum(1 for i in range(n))
在我的mac pro上,这给出了:
0:00:13.774700
0:00:01.591226
0:00:01.489159
此次,concurrent.future显然更快。
原因是:你正在模拟一个基于cpu的任务,因为python的GIL,concurrent.future使它变慢。
concurrent.future提供了一个用于异步执行callables的高级接口,你将它用于错误的场景。