TIA Bloomberg从Excel公式转换 - BDS()批量数据

时间:2017-04-21 01:36:40

标签: python bloomberg

https://www.bloomberg.com/professional/support/api-library/如果您查看BLPAPI Core Developer Guide下的15.3 BDS(): BULK DATA (STATIC),该指南会向您显示一个非常简单的BDS()转化。

我正在尝试获取细分数据。这是我试图转换的Excel公式: BDS("MSFT","PG_REVENUE","PG_HIERARCHY_LEVEL=1","NUMBER_OF_PERIODS=-11","REVERSE_PERIOD_ORDER=N","PRODUCT_GEO_OVERRIDE=P","FUND_PER","FQ")

这是我的代码:

from tia.bbg import LocalTerminal

ticker=['MSFT US Equity']
overrides=["PG_HIERARCHY_LEVEL=1","PRODUCT_GEO_OVERRIDE=P",'FUND_PER','FQ']

resp = LocalTerminal.get_reference_data(ticker,"PG_REVENUE",overrides)
a=resp.as_map() 

似乎无论我放入overrides变量。我得到相同的输出。

defaultdict(<type 'dict'>, {'MSFT US Equity': {'PG_REVENUE':                             Metric Name  Product Geographic Hierarchy Level  \
0               More Personal Computing                                   1   
1   Productivity and Business Processes                                   1   
2                     Intelligent Cloud                                   1   
3                   Corporate and other                                   1   
4                            Commercial                                   1   
5                      Commercial Other                                   2   
6                  Commercial Licensing                                   2   
7                 Devices and Consumers                                   1   
8                           D & C Other                                   2   
9                        D & C Hardware                                   2   
10                      D & C Licensing                                   2   

    Period 1 Value  Period 2 Value  Period 3 Value  Period 4 Value  \
0     4.046000e+04    4.316000e+04    3.840700e+04   -2.424536e-14   
1     2.648700e+04    2.643000e+04    2.697200e+04   -2.424536e-14   
2     2.504200e+04    2.371500e+04    2.173200e+04   -2.424536e-14   
3    -6.669000e+03    2.750000e+02   -2.780000e+02    4.030000e+02   
4    -2.424536e-14   -2.424536e-14   -2.424536e-14    4.534600e+04   
5    -2.424536e-14   -2.424536e-14   -2.424536e-14    5.660000e+03   
6    -2.424536e-14   -2.424536e-14   -2.424536e-14    3.968600e+04   
7    -2.424536e-14   -2.424536e-14   -2.424536e-14    3.210000e+04   
8    -2.424536e-14   -2.424536e-14   -2.424536e-14    6.618000e+03   
9    -2.424536e-14   -2.424536e-14   -2.424536e-14    6.461000e+03   
10   -2.424536e-14   -2.424536e-14   -2.424536e-14    1.902100e+04   

    Period 5 Value  
0    -2.424536e-14  
1    -2.424536e-14  
2    -2.424536e-14  
3    -4.850000e+02  
4     4.177000e+04  
5     4.644000e+03  
6     3.712600e+04  
7     3.243800e+04  
8     6.203000e+03  
9     6.740000e+03  
10    1.949500e+04  }})

我不确定如何按季度获得输出。

1 个答案:

答案 0 :(得分:0)

实际上,您不必使用引号来覆盖。

  

overrides=[PG_HIERARCHY_LEVEL=1]

请参阅tia GitHub页面中的示例jupyter notebook: http://nbviewer.jupyter.org/github/bpsmith/tia/blob/master/examples/v3api.ipynb