我试图将nlme
对象的结果可视化但没有成功。当我使用lmer
对象执行此操作时,会创建正确的绘图。我的目标是使用nlme
并使用ggplot2
显示每个人的拟合增长曲线。 predict()
函数似乎与nlme
和lmer
对象的工作方式不同。
模型:
#AR1 with REML
autoregressive <- lme(NPI ~ time,
data = data,
random = ~time|patient,
method = "REML",
na.action = "na.omit",
control = list(maxlter=5000, opt="optim"),
correlation = corAR1())
nlme
可视化尝试:
data <- na.omit(data)
data$patient <- factor(data$patient,
levels = 1:23)
ggplot(data, aes(x=time, y=NPI, colour=factor(patient))) +
geom_point(size=1) +
#facet_wrap(~patient) +
geom_line(aes(y = predict(autoregressive,
level = 1)), size = 1)
当我使用时:
data$fit<-fitted(autoregressive, level = 1)
geom_line(aes(y = fitted(autoregressive), group = patient))
它为每个人返回相同的拟合值,因此ggplot为每个人生成相同的增长曲线。运行test <-data.frame(ranef(autoregressive, level=1))
会根据患者ID返回不同的截距和斜率。有趣的是,当我使用lmer
拟合模型并运行下面的代码时,它返回正确的图。 为什么predict()
与nlme
和lmer
个对象的工作方式不同?
timeREML <- lmer(NPI ~ time + (time | patient),
data = data,
REML=T, na.action=na.omit)
ggplot(data, aes(x = time, y = NPI, colour = factor(patient))) +
geom_point(size=3) +
#facet_wrap(~patient) +
geom_line(aes(y = predict(timeREML)))
答案 0 :(得分:0)
在创建可重现的示例时,我发现predict()
或ggplot()
中没有发生错误,而是lme
模型中的错误。
数据:
###libraries
library(nlme)
library(tidyr)
library(ggplot2)
###example data
df <- data.frame(replicate(78, sample(seq(from = 0,
to = 100, by = 2), size = 25,
replace = F)))
##add id
df$id <- 1:nrow(df)
##rearrange cols
df <- df[c(79, 1:78)]
##sort columns
df[,2:79] <- lapply(df[,2:79], sort)
##long format
df <- gather(df, time, value, 2:79)
##convert time to numeric
df$time <- factor(df$time)
df$time <- as.numeric(df$time)
##order by id, time, value
df <- df[order(df$id, df$time),]
##order value
df$value <- sort(df$value)
没有NA值的模型1适合成功。
###model1
model1 <- lme(value ~ time,
data = df,
random = ~time|id,
method = "ML",
na.action = "na.omit",
control = list(maxlter=5000, opt="optim"),
correlation = corAR1(0, form=~time|id,
fixed=F))
引入NA会导致模型1中的可逆系数矩阵误差。
###model 1 with one NA value
df[3,3] <- NA
model1 <- lme(value ~ time,
data = df,
random = ~time|id,
method = "ML",
na.action = "na.omit",
control = list(maxlter=2000, opt="optim"),
correlation = corAR1(0, form=~time|id,
fixed=F))
但不是模型2,它具有更简单的组内AR(1)相关结构。
###but not in model2
model2 <- lme(value ~ time,
data = df,
random = ~time|id,
method = "ML",
na.action = "na.omit",
control = list(maxlter=2000, opt="optim"),
correlation = corAR1(0, form = ~1 | id))
但是,将opt="optim"
更改为opt="nlminb"
会成功符合模型1。
###however changing the opt to "nlminb", model 1 runs
model3 <- lme(value ~ time,
data = df,
random = ~time|id,
method = "ML",
na.action = "na.omit",
control = list(maxlter=2000, opt="nlminb"),
correlation = corAR1(0, form=~time|id,
fixed=F))
下面的代码成功地显示了模型3(以前的模型1)。
df <- na.omit(df)
ggplot(df, aes(x=time, y=value)) +
geom_point(aes(colour = factor(id))) +
#facet_wrap(~id) +
geom_line(aes(y = predict(model3, level = 0)), size = 1.3, colour = "black") +
geom_line(aes(y = predict(model3, level=1, group=id), colour = factor(id)), size = 1)
请注意,我不确定将优化程序从"optim"
更改为"nlminb"
的原因及其工作原理。