我在java上使用openNLP API来处理我正在进行的项目。问题是,我的程序只处理单词而没有通信。 代码:
String line = input.nextLine();
InputStream inputStreamTokenizer = new FileInputStream("/home/bruno/openNLP/apache-opennlp-1.7.2-src/models/pt-token.bin");
TokenizerModel tokenModel = new TokenizerModel(inputStreamTokenizer);
//Instantiating the TokenizerME class
TokenizerME tokenizer = new TokenizerME(tokenModel);
String tokens[] = tokenizer.tokenize(line);
InputStream inputStream = new FileInputStream("/home/bruno/openNLP/apache-opennlp-1.7.2-src/models/pt-sent.bin");
SentenceModel model = new SentenceModel(inputStream);
//Instantiating the SentenceDetectorME class
SentenceDetectorME detector = new SentenceDetectorME(model);
//Detecting the sentence
String sentences[] = detector.sentDetect(line);
//Loading the NER-location model
//InputStream inputStreamLocFinder = new FileInputStream("/home/bruno/openNLP/apache-opennlp-1.7.2-src/models/en-ner-location.bin");
//TokenNameFinderModel model = new TokenNameFinderModel(inputStreamLocFinder);
//Loading the NER-person model
InputStream inputStreamNameFinder = new FileInputStream("/home/bruno/TryOllie/data/pt-ner-floresta.bin");
TokenNameFinderModel model2 = new TokenNameFinderModel(inputStreamNameFinder);
//Instantiating the NameFinderME class
NameFinderME nameFinder2 = new NameFinderME(model2);
//Finding the names of a location
Span nameSpans2[] = nameFinder2.find(tokens);
//Printing the spans of the locations in the sentence
//for(Span s: nameSpans)
//System.out.println(s.toString()+" "+tokens[s.getStart()]);
Set<String> x = new HashSet<String>();
x.add("event");
x.add("artprod");
x.add("place");
x.add("organization");
x.add("person");
x.add("numeric");
SimpleTokenizer simpleTokenizer = SimpleTokenizer.INSTANCE;
Span[] tokenz = simpleTokenizer.tokenizePos(line);
Set<String> tk = new HashSet<String>();
for( Span tok : tokenz){
tk.add(line.substring(tok.getStart(), tok.getEnd()));
}
for(Span n: nameSpans2)
{
if(x.contains(n.getType()))
System.out.println(n.toString()+ " -> " + tokens[n.getStart()]);
}
我得到的输出是:
Ficheiro com extensao: file.txt
[1..2) event -> choque[3..4) event -> cadeia[6..7) artprod -> viaturas[13..14) event -> feira[16..18) place -> Avenida[20..21) place -> Porto[24..25) event -> incêndio[2..3) event -> acidente[5..6) artprod -> viaturas[44..45) organization -> JN[46..47) person -> António[47..48) place -> Campos[54..60) organization -> Batalhão[1..2) event -> acidente[6..8) numeric -> 9[11..12) place -> Porto-Matosinhos[21..22) event -> ocorrência[29..30) artprod -> .[4..5) organization -> Sapadores[7..10) organization -> Bombeiros[14..15) numeric -> 15
我想要做的是一个多学期的NER,就像Antonio Campos是一个人,而不是人 - &gt;安东尼奥和地方 - &gt; Campos,或组织 - &gt; Universidade Nova de Lisboa
答案 0 :(得分:2)
您正在打印错误的数据结构。 span getSart和getEnd将指向作为实体一部分的标记序列。您只打印第一个令牌。
此外,您在检测句子之前正在进行标记化。
请尝试以下代码:
// load the models outside your loop
InputStream inputStream =
new FileInputStream("/home/bruno/openNLP/apache-opennlp-1.7.2-src/models/pt-sent.bin");
SentenceModel model = new SentenceModel(inputStream);
//Instantiating the SentenceDetectorME class
SentenceDetectorME detector = new SentenceDetectorME(model);
InputStream inputStreamTokenizer =
new FileInputStream("/home/bruno/openNLP/apache-opennlp-1.7.2-src/models/pt-token.bin");
TokenizerModel tokenModel = new TokenizerModel(inputStreamTokenizer);
//Instantiating the TokenizerME class
TokenizerME tokenizer = new TokenizerME(tokenModel);
//Loading the NER-person model
InputStream inputStreamNameFinder = new FileInputStream("/home/bruno/TryOllie/data/pt-ner-floresta.bin");
TokenNameFinderModel model2 = new TokenNameFinderModel(inputStreamNameFinder);
//Instantiating the NameFinderME class
NameFinderME nameFinder2 = new NameFinderME(model2);
String line = input.nextLine();
while(line != null) {
// first we find sentences
String sentences[] = detector.sentDetect(line);
for (String sentence :
sentences) {
// now we find the sentence tokens
String tokens[] = tokenizer.tokenize(sentence);
// now we are good to apply NER
Span[] nameSpans = nameFinder2.find(tokens);
// now we can print the spans
System.out.println(Arrays.toString(Span.spansToStrings(nameSpans, tokens)));
line = input.nextLine();
}
}
答案 1 :(得分:0)
Stanford-NLP 仅处理单个字。即使你给coreNLP一个句子,它也会闯入令牌并逐一处理它们。我从未听说NER适用于多学期。