I have some data where both the input and the output values are standardized, so the difference between Y and Y_pred is always gonna very small.
I feel that the l2-norm will penalize less the model than the l1-norm since squaring a number that is between 0 and 1 will always result in a lower number.
So my question is, is it ok to use the l2-norm when both the input and the output are standardized?
答案 0 :(得分:1)
没关系。
基本思想/动机是如何惩罚偏差。 L1-norm并不关心异常值,而L2-norm则严重惩罚这些异常值。这是基本的区别,你会发现很多优点和缺点,即使在维基百科上也是如此。
所以关于你的问题,如果预期的偏差很小是有意义的:当然,它的行为是一样的。
我们举个例子:
y_real 1.0 ||| y_pred 0.8 ||| y_pred 0.6
l1: |0.2| = 0.2 |0.4| = 0.4 => 2x times more error!
l2: 0.2^2 = 0.04 0.4^2 = 0.16 => 4x times more error!
你知道,基本思想仍然适用!