我试图了解如何在使用get_dummies
后解决列问题。
例如,我们说我有三个分类变量。
第一个变量有2个级别。
第二个变量有5个级别。
第三个变量有2个级别。
df=pd.DataFrame({"a":["Yes","Yes","No","No","No","Yes","Yes"], "b":["a","b","c","d","e","a","c"],"c":["1","2","2","1","2","1","1"]})
我为所有三个变量创建了虚拟变量,以便在python中的sklearn
回归中使用它们。
df1 = pd.get_dummies(df,drop_first=True)
现在我要创建两个交互(乘法):b c,b a
如何在不使用其特定名称的情况下创建每个虚拟变量与另一个变量之间的乘法:
df1['a_yes_b'] = df1['a_Yes']*df1['b_b']
df1['a_yes_c'] = df1['a_Yes']*df1['b_c']
df1['a_yes_d'] = df1['a_Yes']*df1['b_d']
df1['a_yes_e'] = df1['a_Yes']*df1['b_e']
df1['c_2_b'] = df1['c_2']*df1['b_b']
df1['c_2_c'] = df1['c_2']*df1['b_c']
df1['c_2_d'] = df1['c_2']*df1['b_d']
df1['c_2_e'] = df1['c_2']*df1['b_e']
感谢。
答案 0 :(得分:2)
您可以使用循环创建新列,过滤列名称可以使用boolean indexing
和str.startswith
进行过滤:
a = df1.columns[df1.columns.str.startswith('a')]
b = df1.columns[df1.columns.str.startswith('b')]
c = df1.columns[df1.columns.str.startswith('c')]
for col1 in b:
for col2 in a:
df1[col2 + '_' + col1.split('_')[1]] = df1[col1].mul(df1[col2])
for col1 in b:
for col2 in c:
df1[col2 + '_' + col1.split('_')[1]] = df1[col1].mul(df1[col2])
print (df1)
a_Yes b_b b_c b_d b_e c_2 a_Yes_b a_Yes_c a_Yes_d a_Yes_e c_2_b \
0 1 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 1 1 0 0 0 1
2 0 0 1 0 0 1 0 0 0 0 0
3 0 0 0 1 0 0 0 0 0 0 0
4 0 0 0 0 1 1 0 0 0 0 0
5 1 0 0 0 0 0 0 0 0 0 0
6 1 0 1 0 0 0 0 1 0 0 0
c_2_c c_2_d c_2_e
0 0 0 0
1 0 0 0
2 1 0 0
3 0 0 0
4 0 0 1
5 0 0 0
6 0 0 0
但如果a
和b
只有一列(在示例中是,可能在实际数据中),请使用:filter
,mul
,squeeze
和concat
:
a = df1.filter(regex='^a')
b = df1.filter(regex='^b')
c = df1.filter(regex='^c')
dfa = b.mul(a.squeeze(), axis=0).rename(columns=lambda x: a.columns[0] + x[1:])
dfc = b.mul(c.squeeze(), axis=0).rename(columns=lambda x: c.columns[0] + x[1:])
df1 = pd.concat([df1, dfa, dfc], axis=1)
print (df1)
a_Yes b_b b_c b_d b_e c_2 a_Yes_b a_Yes_c a_Yes_d a_Yes_e c_2_b \
0 1 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 1 1 0 0 0 1
2 0 0 1 0 0 1 0 0 0 0 0
3 0 0 0 1 0 0 0 0 0 0 0
4 0 0 0 0 1 1 0 0 0 0 0
5 1 0 0 0 0 0 0 0 0 0 0
6 1 0 1 0 0 0 0 1 0 0 0
c_2_c c_2_d c_2_e
0 0 0 0
1 0 0 0
2 1 0 0
3 0 0 0
4 0 0 1
5 0 0 0
6 0 0 0
答案 1 :(得分:0)
您可以将dataframe列转换为numpy数组,然后相应地相乘。这里是你可以找到方法的链接:
答案 2 :(得分:0)
这可以解决您的问题:
def get_design_with_pair_interaction(data, group_pair):
""" Get the design matrix with the pairwise interactions
Parameters
----------
data (pandas.DataFrame):
Pandas data frame with the two variables to build the design matrix of their two main effects and their interaction
group_pair (iterator):
List with the name of the two variables (name of the columns) to build the design matrix of their two main effects and their interaction
Returns
-------
x_new (pandas.DataFrame):
Pandas data frame with the design matrix of their two main effects and their interaction
"""
x = pd.get_dummies(data[group_pair])
interactions_lst = list(
itertools.combinations(
x.columns.tolist(),
2,
),
)
x_new = x.copy()
for level_1, level_2 in interactions_lst:
if level_1.split('_')[0] == level_2.split('_')[0]:
continue
x_new = pd.concat(
[
x_new,
x[level_1] * x[level_2]
],
axis=1,
)
x_new = x_new.rename(
columns = {
0: (level_1 + '_' + level_2)
}
)
return x_new