__device__类成员函数改变设备变量

时间:2017-03-16 21:21:12

标签: c++ class templates cuda gpu

我对我编写的CUDA代码的行为感到困惑。我正在为名为__device__的类中的DimmedGridGPU函数编写测试。这个类是在int DIM上模板化的,我遇到问题的函数是在最接近输入值x的点返回网格的值。我有这个内核命名空间用于单元测试,可以单独调用每个__device__函数。

此代码的所需行为是从3.0调用返回值do_get_value(x, grid_),并将d_target[0]设置为此值,然后将其传回主机端以获取单位测试断言。整个内核似乎运行正常,但是当我最后转移回主机端时,我收到cudaErrorInvalidValue错误,我不明白为什么。

以下是代码的最小示例,保留了类的结构及其功能:

#include <cuda_runtime.h>
#include <fstream>

#define gpuErrchk(ans) { gpuAssert((ans), __FILE__, __LINE__); }
inline void gpuAssert(cudaError_t code, const char *file, int line, bool abort=true)
{
   if (code != cudaSuccess) 
   {
     fprintf(stderr,"GPUassert: \"%s\": %s %s %d\n", cudaGetErrorName(code), cudaGetErrorString(code), file, line);
      if (abort) exit(code);
   }
}


template <int DIM>
class DimmedGridGPU{

public:
  size_t grid_size_;//total size of grid
  int b_derivatives_;//if derivatives are going to be used
  int b_interpolate_;//if interpolation should be used on the grid
  double* grid_;//the grid values
  double* grid_deriv_;//derivatives    
  double dx_[DIM];//grid spacing
  double min_[DIM];//grid minimum
  double max_[DIM];//maximum
  int grid_number_[DIM];//number of points on grid
  int b_periodic_[DIM];//if a dimension is periodic
  int* d_b_interpolate_;
  int* d_b_derivatives_;


  DimmedGridGPU(const double* min, 
        const double* max, 
        const double* bin_spacing, 
        const int* b_periodic, 
        int b_derivatives, 
        int b_interpolate) :   b_derivatives_(b_derivatives), b_interpolate_(b_interpolate), grid_(NULL), grid_deriv_(NULL){

    size_t i;

    for(i = 0; i < DIM; i++) {
      min_[i] = min[i];
      max_[i] = max[i];
      b_periodic_[i] = b_periodic[i];

      grid_number_[i] = (int) ceil((max_[i] - min_[i]) / bin_spacing[i]);
      dx_[i] = (max_[i] - min_[i]) / grid_number_[i];
      //add one to grid points if 
      grid_number_[i] = b_periodic_[i] ? grid_number_[i] : grid_number_[i] + 1;
      //increment dx to compensate
      if(!b_periodic_[i])
    max_[i] += dx_[i];
    }

    grid_size_ = 1;
    for(i = 0; i < DIM; i++)
      grid_size_ *= grid_number_[i];
    gpuErrchk(cudaMallocManaged(&grid_, grid_size_ * sizeof(double)));
    if(b_derivatives_) {
      gpuErrchk(cudaMallocManaged(&grid_deriv_, DIM * grid_size_ * sizeof(double)));
      if(!grid_deriv_) {
    printf("Out of memory!! gpugrid.cuh:initialize");   
      }
    }

    gpuErrchk(cudaMalloc((void**)&d_b_interpolate_, sizeof(int)));
    gpuErrchk(cudaMemcpy(d_b_interpolate_, &b_interpolate, sizeof(int), cudaMemcpyHostToDevice));
    gpuErrchk(cudaMalloc((void**)&d_b_derivatives_, sizeof(int)));
    gpuErrchk(cudaMemcpy(d_b_derivatives_, &b_derivatives, sizeof(int), cudaMemcpyHostToDevice));
  }

  ~DimmedGridGPU(){
    gpuErrchk(cudaDeviceSynchronize());
    if(grid_ != NULL){
      gpuErrchk(cudaFree(grid_));
      grid_ = NULL;//need to do this so DimmedGrid's destructor functions properly
    }

    if(grid_deriv_ != NULL){
      gpuErrchk(cudaFree(grid_deriv_));
      grid_deriv_ = NULL;
    }

    gpuErrchk(cudaDeviceReset());
  }
//gets the value of the grid closest to x
  __host__ __device__ double do_get_value( double* x, double* grid_) {

    size_t index[DIM];
    get_index(x, index);
    printf("do_get_value was called on the GPU!, and index[0] is now %d\n", index[0]);
    printf("but multi2one(index) gives us %d\n", multi2one(index));
    double value = grid_[multi2one(index)];
    printf("and value to be returned is %f\n", value);
    return value;
  }
//gets grid's 1D index from an array of coordinates
   __host__ __device__ void get_index(const double* x, size_t result[DIM]) const {
    size_t i;
    double xi;
    printf("get_index was called on the GPU in %i dimension(s)\n", DIM);
    for(i = 0; i < DIM; i++) {
      xi = x[i];
      printf("xi is now %f, min_[i] is %f and dx_[i] is %f\n",xi, min_[i], dx_[i]);
      if(b_periodic_[i]){
    xi -= (max_[i] - min_[i]) * gpu_int_floor((xi - min_[i]) / (max_[i] - min_[i]));
      }
      result[i] = (size_t) floor((xi - min_[i]) / dx_[i]);
    }
  }
//takes a multidimensional index to a 1D index
  __host__ __device__ size_t multi2one(const size_t index[DIM]) const {
    size_t result = index[DIM-1];

    size_t i;    
    for(i = DIM - 1; i > 0; i--) {
      result = result * grid_number_[i-1] + index[i-1];
    }

    return result;

  }

};

__host__ __device__ int gpu_int_floor(double number) {
  return (int) number < 0.0 ? -ceil(fabs(number)) : floor(number);
}


namespace kernels{
  template <int DIM>
  __global__ void get_value_kernel(double* x, double* target_arr, double* grid_, DimmedGridGPU<DIM>  g){
    target_arr[0] = g.do_get_value(x, grid_);
    printf("get_value_kernel has set target[0] to be %f\n", target_arr[0]);//check if the value is set correctly
    return;
  }
}


int main(){
  using namespace kernels;
  double min[] = {0};
  double max[] = {10};
  double bin_spacing[] = {1};
  int periodic[] = {0};
  DimmedGridGPU<1> g (min, max, bin_spacing, periodic, 0, 0);
  for(int i = 0; i < 11; i++){
    g.grid_[i] = i;
    printf("g.grid_[%d] is now %f\n", i, g.grid_[i]);
  }
  gpuErrchk(cudaDeviceSynchronize());
  double x[] = {3.5};

  double* d_x;
  gpuErrchk(cudaMalloc(&d_x, sizeof(double)));
  gpuErrchk(cudaMemcpy(d_x, x, sizeof(double), cudaMemcpyHostToDevice));
  double target[] = {5.0};
  double* d_target;
  gpuErrchk(cudaMalloc((void**)&d_target, sizeof(double)));
  gpuErrchk(cudaMemcpy(d_target, target, sizeof(double), cudaMemcpyHostToDevice));
  gpuErrchk(cudaDeviceSynchronize());
  get_value_kernel<1><<<1,1>>>(d_x, d_target, g.grid_, g);
  gpuErrchk(cudaDeviceSynchronize());
  gpuErrchk(cudaMemcpy(target, d_target, sizeof(double), cudaMemcpyDeviceToHost));
  printf("and after GPU stuff, target[0] is now %f\n", target[0]);
  return(0);
}

那么,为什么这一行(最后cudaMemcpy)抛出一个错误&#34; CudaErrorInvalidValue&#34;,当我所包含的印刷语句清楚地表明正确的值正在在设备上使用,do_get_value(x, grid_)调用返回的值是否正确?

我已经尝试过使用cudaMemcpyFromSymbol,认为分配可能是创建符号而不是以某种方式传递和更改值,但事实并非如此,因为d_target不是有效符号

以下是我的代码的示例输出:

  

g.grid_[0] is now 0.000000

     

g.grid_[1] is now 1.000000

     

g.grid_[2] is now 2.000000

     

g.grid_[3] is now 3.000000

     

g.grid_[4] is now 4.000000

     

g.grid_[5] is now 5.000000

     

g.grid_[6] is now 6.000000

     

g.grid_[7] is now 7.000000

     

g.grid_[8] is now 8.000000

     

g.grid_[9] is now 9.000000

     

g.grid_[10] is now 10.000000

     

get_index was called on the GPU in 1 dimension(s)

     

xi is now 3.500000, min_[i] is 0.000000 and dx_[i] is 1.000000

     

do_get_value was called on the GPU!, and index[0] is now 3

     

but multi2one(index) gives us 3

     

and value to be returned is 3.000000

     

get_value_kernel has set target[0] to be 3.000000

     

GPUassert: "cudaErrorInvalidValue": invalid argument gpugrid.cu 166

1 个答案:

答案 0 :(得分:3)

  

那么,为什么这一行(最后一个cudaMemcpy)抛出错误“CudaErrorInvalidValue”......?

问题围绕着你的析构函数:

  ~DimmedGridGPU(){

析构函数在你可能没有预料到的地方被调用。为了说服自己,请在析构函数中添加printf语句。请注意它在打印输出中出现的位置:

$ ./t955
g.grid_[0] is now 0.000000
g.grid_[1] is now 1.000000
g.grid_[2] is now 2.000000
g.grid_[3] is now 3.000000
g.grid_[4] is now 4.000000
g.grid_[5] is now 5.000000
g.grid_[6] is now 6.000000
g.grid_[7] is now 7.000000
g.grid_[8] is now 8.000000
g.grid_[9] is now 9.000000
g.grid_[10] is now 10.000000
Destructor!
get_index was called on the GPU in 1 dimension(s)
xi is now 3.500000, min_[i] is 0.000000 and dx_[i] is 1.000000
do_get_value was called on the GPU!, and index[0] is now 3
but multi2one(index) gives us 3
and value to be returned is 3.000000
get_value_kernel has set target[0] to be 3.000000
GPUassert: "cudaErrorInvalidValue": invalid argument t955.cu 167

鉴于此,显而易见的是,在析构函数中调用cudaDeviceReset()现在似乎是一个坏主意。 cudaDeviceReset()会清除所有设备分配,因此当您尝试执行此操作时:

gpuErrchk(cudaMemcpy(target, d_target, sizeof(double), cudaMemcpyDeviceToHost));

d_target不再是设备上的有效分配,因此当您尝试将其用作cudaMemcpy的设备目标时,运行时会检查此指针值(设备不会更改)重置)并确定指针值不再对应于有效分配,并引发运行时错误。

Just like in C++当您将对象作为pass-by-value参数传递给函数(或本例中的内核)时,将调用该对象的复制构造函数。当对象副本超出范围the destructor for it will be called时,它是合理的。

我建议将这样的全局范围影响函数cudaDeviceReset()放在对象析构函数中可能是一个脆弱的编程范例,但这可能是一个意见问题。我假设您现在有足够的信息来解决问题。

为了避免下一个可能的问题,只需在析构函数中注释掉对cudaDeviceReset()的调用可能不足以使所有问题都消失(尽管这个问题会消失)。既然你知道这个析构函数在这个程序的普通执行中至少被调用两次,你可能想要仔细考虑该析构函数中发生的其他事情,并且可能会删除更多的东西它,或者完全重新构建你的课程。

例如,请注意cudaDeviceReset()不是唯一可以在析构函数中为这种方式使用的对象造成麻烦的函数。同样,cudaFree()在对象副本上调用的析构函数中使用时,可能会对原始对象产生意想不到的后果。