如何根据列组前缀替换列组的空白?

时间:2017-02-13 19:51:02

标签: r replace na prefix

如果基于相同前缀的其他列中是否存在值,如何将列中的NA替换为全0?例如,对于列A1,我只想将NA替换为0,其中列A2或A3是NONBLANK。我的真实数据有数百组列。

我的数据:

ID<-c(1,2,3,4,5,6,7,8)
A1<-c(1,NA,1,NA,1,1,1,NA)
A2<-c(1,NA,NA,1,NA,1,NA,NA)
A3<-c(1,NA,NA,NA,1,NA,NA,NA)
B1<-c(1,1,1,1,1,1,NA,1)
B2<-c(1,1,1,1,NA,1,NA,NA)
B3<-c(1,1,NA,NA,1,NA,NA,NA)

mydata<-cbind.data.frame(ID,A1,A2,A3,B1,B2,B3)

HAVE:

enter image description here

WANTED:

如果列A2或A3具有1,则0应该替换列A1中的NA。如果列A1或A3具有1,则A应该替换列A2中的NA,依此类推,如下所示: enter image description here

4 个答案:

答案 0 :(得分:4)

另一种方法是

mydata[, 2:4][is.na(mydata[, 2:4])] <- rep(NA^(rowSums(is.na(mydata[2:4])) == 3) - 1,
                                           length(2:4))[is.na(mydata[, 2:4])]
mydata[, 5:7][is.na(mydata[, 5:7])] <- rep(NA^(rowSums(is.na(mydata[5:7])) == 3) - 1,
                                           length(5:7))[is.na(mydata[, 5:7])]

mydata
  ID A1 A2 A3 B1 B2 B3
1  1  1  1  1  1  1  1
2  2 NA NA NA  1  1  1
3  3  1  0  0  1  1  0
4  4  0  1  0  1  1  0
5  5  1  0  1  1  0  1
6  6  1  1  0  1  1  0
7  7  1  0  0 NA NA NA
8  8 NA NA NA  1  0  0

列值是硬编码的,对许多组没有帮助,所以遵循@ haboryme的技术,你可以做到

# group columns into list elements with lapply and grep
myCols <- lapply(c("A", "B"), function(i) grep(i, colnames(mydata)))

# loop through and make changes
for(i in myCols) {
  mydata[, i][is.na(mydata[, i])] <- rep(NA^(rowSums(is.na(mydata[i])) == 3) - 1,
                                         length(i))[is.na(mydata[, i])]
}

答案 1 :(得分:4)

使用lapply()的自定义函数:如果提供任意数量的列,只要它们遵循这种具有单个字母的模式

func <- function(x){
  df <- mydata[grepl(x, colnames(mydata))] # extract only the same letter columns
  m <- !is.na(df)          # create a logical matrix to know which all are NA's
  i = which(rowSums(m)!=0) # if all had NA's then summ will be 0. so avoid that
  df[i,][is.na(df[i,])] <- 0 # insert wherever NA's to be 0( but only in those rows decided above)
  return(df)
  }

data.frame(ID = mydata$ID,lapply(LETTERS[1:2], func))
#  ID A1 A2 A3 B1 B2 B3
#1  1  1  1  1  1  1  1
#2  2 NA NA NA  1  1  1
#3  3  1  0  0  1  1  0
#4  4  0  1  0  1  1  0
#5  5  1  0  1  1  0  1
#6  6  1  1  0  1  1  0
#7  7  1  0  0 NA NA NA
#8  8 NA NA NA  1  0  0

答案 2 :(得分:3)

基础R中的非精确答案,但似乎有效:

for(i in unique(gsub("\\d","",colnames(mydata)[-1]))){
  mydata[apply(mydata[,grepl(i,colnames(mydata))],1,function(x) any(!is.na(x))),grepl(i,colnames(mydata))][is.na(mydata[apply(mydata[,grepl(i,colnames(mydata))],1,function(x) any(!is.na(x))),grepl(i,colnames(mydata))])]<-0
}

给出了:

  ID A1 A2 A3 B1 B2 B3
1  1  1  1  1  1  1  1
2  2 NA NA NA  1  1  1
3  3  1  0  0  1  1  0
4  4  0  1  0  1  1  0
5  5  1  0  1  1  0  1
6  6  1  1  0  1  1  0
7  7  1  0  0 NA NA NA
8  8 NA NA NA  1  0  0

修改
我们的想法是从示例中的uniquecolnames(mydata)A中提取B个字母,方法是将数字(\\d)替换为空白{"" 1}}。
然后循环遍历这些字母以选择以它开头的列。这是grepl(i,colnames(mydata))的作用 apply用于获取至少(any())一个非NA值(!is.na())的行的向量:apply(mydata[,grepl(i,colnames(mydata))],1,function(x) any(!is.na(x)))
然后将所有内容组合在一起df[is.na(df))]<-0,但df对应于给定字母的列,以及应更换NA的行。 /> df将是:mydata[apply(mydata[,grepl(i,colnames(mydata))],1,function(x) any(!is.na(x))),grepl(i,colnames(mydata))]

答案 3 :(得分:2)

两个tidyverse选项;哪个更实用取决于实际数据的维度。两者都有条件地利用coalesce

手动:

library(tidyverse)

mydata %>% rowwise() %>%    # group by row
    mutate_at(vars(starts_with('A')),    # for A prefixes, coalesce if not all NA
              funs(ifelse(all(is.na(c(A1, A2, A3))), ., coalesce(., 0)))) %>% 
    mutate_at(vars(starts_with('B')),    # likewise for B
              funs(ifelse(all(is.na(c(B1, B2, B3))), ., coalesce(., 0))))

## Source: local data frame [8 x 7]
## Groups: <by row>
## 
## # A tibble: 8 × 7
##      ID    A1    A2    A3    B1    B2    B3
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1     1     1     1     1     1     1     1
## 2     2    NA    NA    NA     1     1     1
## 3     3     1     0     0     1     1     0
## 4     4     0     1     0     1     1     0
## 5     5     1     0     1     1     0     1
## 6     6     1     1     0     1     1     0
## 7     7     1     0     0    NA    NA    NA
## 8     8    NA    NA    NA     1     0     0

或以编程方式,通过重塑:

mydata %>% gather(var, val, -ID) %>%    # reshape to long
    group_by(ID, letter = substr(var, 1, 1)) %>%    # group by ID and prefix
    mutate(val = if(all(is.na(val))) val else coalesce(val, 0)) %>% 
    ungroup() %>% select(-letter) %>% spread(var, val)    # clean up

## # A tibble: 8 × 7
##      ID    A1    A2    A3    B1    B2    B3
## * <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1     1     1     1     1     1     1     1
## 2     2    NA    NA    NA     1     1     1
## 3     3     1     0     0     1     1     0
## 4     4     0     1     0     1     1     0
## 5     5     1     0     1     1     0     1
## 6     6     1     1     0     1     1     0
## 7     7     1     0     0    NA    NA    NA
## 8     8    NA    NA    NA     1     0     0

如果前缀可以超出单个字母,请将substr替换为合适的正则表达式,例如sub('\\d+$', '', var)