目标
我试图用Cython加速我的Python程序。编写的代码I是对Forward算法的尝试,用于递归地和有效地计算隐马尔可夫模型(HMM)中的长序列的概率。这个问题通常被称为评估问题。
Python代码
在名为hmm.py
import numpy
import pandas
class HMM():
'''
args:
O:
observation sequence. A list of 'H's or 'T's
X:
state sequence. 'S','M' or 'L's
A:
transition matrix, N by N
B:
Emission matrix, M by N
M:
Number of possibilities in emission matrix
pi:
initial transition matrix
N:
Number of states
T:
length of the observation sequence
Q:
possible hidden states (Xs)
V:
possible observations (Os)
'''
def __init__(self,A,B,pi,O,X):
self.A=A
self.N=self.A.shape[0]
self.B=B
self.M=self.B.shape[1]
self.pi=pi
self.O=O
self.T=len(O)
self.Q=list(self.A.index)
self.V=list(self.B.keys())
self.X=X
def evaluate(self):
'''
Solve the evaluation problem for HMMs
by implementing the forward algorithm
'''
c0=0
ct=numpy.zeros(self.T)
alpha= numpy.zeros((self.T,self.N))
## compute alpha[0]
for i in range(self.N):
pi0=self.pi[self.Q[i]]
bi0=self.B.loc[self.Q[i]][self.O[0]]
alpha[0,i]=pi0*bi0
c0+=alpha[0,i]
ct[0]=alpha[0,i]
ct[0]=1/ct[0]#[0]
alpha=alpha*ct[0]
for t in range(1,self.T):
for i in range(self.N):
for j in range(self.N):
aji= self.A[self.Q[j]][self.Q[i]]
alpha[t,j]= alpha[t-1,j]*aji
ct[t]=ct[t]+alpha[t,i]
ct[t]=1/ct[t]
alpha=alpha*ct[t]
return (alpha,ct)
可以使用以下命令调用此代码:
if __name__=='__main__':
A=[[0.7,0.3],[0.4,0.6]]
A= numpy.matrix(A)
A=pandas.DataFrame(A,columns=['H','C'],index=['H','C'])
'''
three types of emmission, small s, medium m and large l
'''
B=[[0.1,0.4,0.5],[0.7,0.2,0.1]]
B=numpy.matrix(B)
B=pandas.DataFrame(B,columns=['S','M','L'],index=['H','C'])
'''
initial probabilities for state, H and C
'''
pi=[0.6,0.4]
pi=numpy.matrix(pi)
pi=pandas.DataFrame(pi,columns=['H','C'])
O=(0,1,0,2)
O=('S','M','S','L')
X=('H','H','C','C')
H=HMM(A,B,pi,O,X)
print H.evaluate()
使用%timeit
时,我使用纯python
使用Cython进行编译
然后我将evaluate
函数(而不是整个类)放在新文件hmm.pyx
扩展名中:
import numpy
cimport numpy
cpdef evaluate_compiled(A,B,pi,O,X):
'''
Solve the evaluation problem for HMMs
by implementing the forward algorithm
'''
T=len(O)
N=len(list(set(X)))
Q=list(set(X))
V=list(set(O))
c0=0
ct=numpy.zeros(T)
alpha= numpy.zeros((T,N))
## compute alpha[0]
for i in range(N):
pi0=pi[Q[i]]
bi0=B.loc[Q[i]][O[0]]
alpha[0,i]=pi0*bi0
c0+=alpha[0,i]
ct[0]=alpha[0,i]
ct[0]=1/ct[0]#[0]
alpha=alpha*ct[0]
for t in range(1,T):
for i in range(N):
for j in range(N):
aji= A[Q[j]][Q[i]]
alpha[t,j]= alpha[t-1,j]*aji
ct[t]=ct[t]+alpha[t,i]
ct[t]=1/ct[t]
alpha=alpha*ct[t]
return (alpha,ct)
在setup.py
:
try:
from setuptools import setup
from setuptools import Extension
except ImportError:
from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext
import numpy
setup(cmdclass={'build_ext':build_ext},
ext_modules=[Extension('hmm',
sources=['HMMCluster/hmm.pyx'], #File is in a directory called HMMCluster
include_dirs=[numpy.get_include()])] )
编译后,我可以使用:
from hmm import evaluate_compiled
在上面的__main__
区块下,我可以使用evaluate
:
print evaluate_compiled(A,B,pi,O,X)
和%timeit
:
正如您所看到的,在不更改代码的情况下,我的速度提高了约3倍。但是,我读过的所有文档都表明Python中缺乏速度是由于动态推断变量类型。因此,原则上,我可以声明变量类型并进一步加快速度。
带类型声明的Cython
现在,这篇文章的最后一个函数再次使用相同的算法,但带有类型声明
cpdef evaluate_compiled_with_type_declaration(A,B,pi,O,X):
cdef int t,i,j
cdef int T = len(O)
cdef int N = len(list(set(X)))
cdef list Q = list(set(X))
cdef list V = list(set(O))
cdef float c0 = 0
# cdef numpy.ndarray ct = numpy.zeros(T,dtype=double) ## this caused compilation to fail
ct=numpy.zeros(T)
alpha= numpy.zeros((T,N))
for i in range(N):
pi0=pi[Q[i]]
bi0=B.loc[Q[i]][O[0]]
alpha[0,i]=pi0*bi0
c0+=alpha[0,i]
ct[0]=alpha[0,i]
ct[0]=1/ct[0]#[0]
alpha=alpha*ct[0]
for t in range(1,T):
for i in range(N):
for j in range(N):
aji= A[Q[j]][Q[i]]
alpha[t,j]= alpha[t-1,j]*aji
ct[t]=ct[t]+alpha[t,i]
ct[t]=1/ct[t]
alpha=alpha*ct[t]
return (alpha,ct)
编译完成后,%timeit得到:
如您所见,类型声明尚未对代码性能进行任何进一步改进。我的问题是:可以对此代码的速度进行任何进一步的改进,如果是,我该怎么做?
修改 根据评论中的建议,我添加了其他类型声明:
cdef float pi0,bi0
cdef numpy.ndarray[numpy.float64_t, ndim=1] ct
cdef numpy.ndarray[numpy.float64_t, ndim=2] aij,alpha
从%timeit
得到了这个:
所以,即使声明类型,仍然没有真正的加速。
答案 0 :(得分:3)
"现代"在Cython中使用NumPy数组的方法是" Typed Memoryviews" http://docs.cython.org/en/latest/src/userguide/memoryviews.html
必须将相应的参数声明为:
cpdef evaluate_compiled_with_type_declaration(double[:,:] A, double[:,:] B, double[:] pi, int[:] O, int[:] X):
(只是猜测类型和形状)。
必须将它们直接编入索引为A[i,j]
而不是A[i][j]
您可以声明结果数组并一次性填充它们。
cdef double[:] ct=numpy.zeros(T)
cdef double[:,:] alpha= numpy.zeros((T,N))
有关优化,请参阅编译器指令http://cython.readthedocs.io/en/latest/src/reference/compilation.html?highlight=cdivision#compiler-directives(特别是cdivision
和boundscheck
)
您不应该通过list(set(...))
转换输入数据,因为该设置会失去排序。
要检查您的代码是否已编译",请按照Warren Weckesser的建议在文件上使用cython -a