我遇到了在hadoop流中运行简单python代码的问题。 我已尝试过以前帖子中的所有建议,但出现类似错误并仍然存在问题。
我已在外面运行代码并且运行良好。
更新:我使用以下代码运行hadoop流之外的代码:
cat file |python mapper.py -n 5 -r 0.4 |sort|python reducer.py -f 3618
这很好..但现在我需要将它运行到HADOOP STREAMING
hadoop jar /usr/lib/hadoop-mapreduce/hadoop-streaming.jar \
-D mapreduce.job.reduces=5 \
-files lr \
-mapper "python lr/mapper.py -n 5 -r 0.4" \
-reducer "python lr/reducer.py -f 3618" \
-input training \
-output models
hadoop流媒体是失败的。我查看了日志,但是我没有看到任何告诉我它为什么会发生的事情?
我有以下 mapper.py :
#!/usr/bin/env python
import sys
import random
from optparse import OptionParser
parser = OptionParser()
parser.add_option("-n", "--model-num", action="store", dest="n_model",
help="number of models to train", type="int")
parser.add_option("-r", "--sample-ratio", action="store", dest="ratio",
help="ratio to sample for each ensemble", type="float")
options, args = parser.parse_args(sys.argv)
random.seed(8803)
r = options.ratio
for line in sys.stdin:
# TODO
# Note: The following lines are only there to help
# you get started (and to have a 'runnable' program).
# You may need to change some or all of the lines below.
# Follow the pseudocode given in the PDF.
key = random.randint(0, options.n_model-1)
value = line.strip()
for i in range(1, options.n_model+1):
m = random.random()
if m < r:
print "%d\t%s" % (i, value)
和我的 reducer.py :
#!/usr/bin/env python
import sys
import pickle
from optparse import OptionParser
from lrsgd import LogisticRegressionSGD
from utils import parse_svm_light_line
parser = OptionParser()
parser.add_option("-e", "--eta", action="store", dest="eta",
default=0.01, help="step size", type="float")
parser.add_option("-c", "--Regularization-Constant", action="store", dest="C",
default=0.0, help="regularization strength", type="float")
parser.add_option("-f", "--feature-num", action="store", dest="n_feature",
help="number of features", type="int")
options, args = parser.parse_args(sys.argv)
classifier = LogisticRegressionSGD(options.eta, options.C, options.n_feature)
for line in sys.stdin:
key, value = line.split("\t", 1)
value = value.strip()
X, y = parse_svm_light_line(value)
classifier.fit(X, y)
pickle.dump(classifier, sys.stdout)
当我在代码之外运行它时,它运行正常,但是当我在hadoop-streaming中运行它时,它给了我错误:
17/02/07 07:44:34 INFO mapreduce.Job: Task Id : attempt_1486438814591_0038_m_000001_2, Status : FAILED
Error: java.lang.RuntimeException: PipeMapRed.waitOutputThreads(): subprocess failed with code 2
at org.apache.hadoop.streaming.PipeMapRed.waitOutputThreads(PipeMapRed.java:322)
at org.apache.hadoop.streaming.PipeMapRed.mapRedFinished(PipeMapRed.java:535)
at org.apache.hadoop.streaming.PipeMapper.close(PipeMapper.java:130)
答案 0 :(得分:0)
确保使用chmod可执行映射器文件和化简器文件。 (例如:“ chmod 744 mapper.py”)
然后像这样执行流式传输命令:
hadoop jar /usr/lib/hadoop-mapreduce/hadoop-streaming.jar \
-D mapreduce.job.reduces=5 \
-files lr \
-mapper lr/mapper.py -n 5 -r 0.4 \
-reducer lr/reducer.py -f 3618 \
-input training \
-output models
现在它应该可以工作了。如果没有,请发表评论。