我在编码挑战中遇到了这个问题。我无法按时解决,但我仍然想知道怎么做。我对表达树不太熟悉,我发现很难对问题进行建模。描述如下:
输入: expression_tree | sequence_of_operations
输入是一行文本,其中包含一个表达式树和一系列以|
字符分隔的操作,并以\n
换行符结束。输入中允许使用空格,但应忽略。
表达式树是一系列1个字符的变量A-Z,其子表达式树由括号(expression_tree)组成。示例:AB
,A(B C D)
,(AB)C((DE)F)
操作序列是一个字符串R
(反向)或S
(简化)的字符串
反转意味着颠倒表达式树中所有内容的顺序。连续两次应用反向取消。
示例:(AB)C((DE)F) | R
应打印(F(ED))C(BA)
简化意味着删除表达式树中第一个元素及其每个子表达式树周围的括号。多次应用S
应该与应用S
一次具有相同的结果。
示例:(AB)C((DE)F) | S
应打印ABC(DEF)
输出:读取表达式树并从左到右应用操作序列到表达式树,打印出没有字符的结果。
我最想知道的是如何建模表达式树来处理括号以及简化操作应该如何工作?
答案 0 :(得分:1)
'''
Examples are as follows :
INPUT:
(AB)(C(DE))/SS
(((AB)C)D)E/SS
(((AB)C)D)E/SR
(AB)C((DE)F)/SRS
(AB(CD((EF)G)H))(IJ)/SRS
(AB(CD((EF)G)H))(IJ)/SSSRRRS
(A(B(C)D)E(FGH(IJ)))/SRRSSRSSRRRSSRS
(A(BC(D(E((Z)K(L)))F))GH(IJK))/S
-------------------------------
OUTPUT:
AB(C(DE))
ABCDE
EDCBA
FEDCBA
JI(H(GFE)DC)BA
JI(H(GFE)DC)BA
JIHFGE(D(C)B)A
A(BC(D(E(ZK(L)))F))GH(IJK)/S
'''
'''
operationReverse function returns a reversed expression tree
Example : AB(CD) -> (DC)BA
'''
def operationReverse(expression):
'''============== Reversing the whole expressions ================'''
expression = expression[::-1]
expression = list(expression)
'''========= Replace Closing brace with Opening brace and vice versa ========='''
for x in range(0, len(expression)):
if(expression[x] != ')' and expression[x] != '('):
continue
elif(expression[x] == ")"):
expression[x] = "("
else:
expression[x] = ")"
expression = ''.join(expression)
return expression
'''
operationSimplify function returns a simplified expression tree
Example : (AB)(C(DE)) -> AB(C(DE))
operationSimplify uses recursion
'''
def operationSimplify(expression):
'''========= If no parenthesis found then return the expression as it is because it is already simplified ========='''
'''========= This is also the base condition to stop recursion ============='''
if(expression.find('(')==-1):
return expression
'''If 1st character is opening brace then find its correspoinding closing brace and remove them and call the function by passing the values between the opening and closing brace'''
if(expression[0] == '('):
x = 1
#numOfOpeningBrackets = maintains the count of opening brackets for finding it's corresponding closing bracket
numOfOpeningBrackets = 1
while(x < len(expression)):
if(expression[x] != ')' and expression[x] != '('):
x = x + 1
continue
elif(expression[x] == "("):
numOfOpeningBrackets = numOfOpeningBrackets + 1
x = x + 1
else:
numOfOpeningBrackets = numOfOpeningBrackets - 1
if(numOfOpeningBrackets == 0):
posOfCloseBracket = x
break
x = x + 1
expression = operationSimplify(expression[1:posOfCloseBracket]) + expression[posOfCloseBracket+1:]
'''========= If no parenthesis found then return the expression as it is because it is already simplified ========='''
if(expression.find('(')==-1):
return expression
'''========= Find the opening brace and it's closing brace and new expression tree will be concatenation of start of string till opening brace including the brace and string with in the opening brace and closing brace passed as an argument to the function itself and the remaining string ========='''
x = 0
#numOfOpeningBrackets = maintains the count of opening brackets for finding it's corresponding closing bracket
recursion = False
numOfOpeningBrackets = 0
while (x < len(expression)):
if(expression[x] != ')' and expression[x] != '('):
x = x + 1
elif(expression[x] == "("):
if(numOfOpeningBrackets == 0 or recursion == True):
numOfOpeningBrackets = 0
recursion = False
posOfStartBracket = x
y = x
numOfOpeningBrackets = numOfOpeningBrackets + 1
x = x + 1
else:
numOfOpeningBrackets = numOfOpeningBrackets - 1
if(numOfOpeningBrackets == 0):
posOfCloseBracket = x
x = y
expression=expression[0:posOfStartBracket+1]+operationSimplify(expression[posOfStartBracket+1:posOfCloseBracket])+expression[posOfCloseBracket:]
recursion = True
x = x + 1
return expression
'''
solution fucntion prints the final result
'''
def solution(inputString):
'''========= Remove the spaces from the input ==============='''
#inputString = inputString.replace("\n","")
inputString = inputString.replace(" ","")
inputString = inputString.replace("\t","")
#inputString = inputString.replace("()","")
'''=============== The substring before '/' is expression tree and substring after '/' is sequence of operations ======================'''
#posOfSlash = Position Of Slash Character
posOfSlash = inputString.find('/')
if(posOfSlash == -1):
print (inputString)
return
#expressionTree = Expression Tree
expressionTree = inputString[0:posOfSlash]
#seqOfOp = sequence of operations to be performed
seqOfOp = inputString[posOfSlash+1:]
'''============ If sequence Of Operations is empty then print the expression tree as it is ============== '''
if(len(seqOfOp)==0):
print(expressionTree)
return
'''============= Removing all the pairs of RR from the sequence Of Operations =================='''
seqOfOp = seqOfOp.replace(r+r,'')
'''============ All mulptiple S are replaced by one single S ================'''
while(seqOfOp.find(s+s) != -1):
seqOfOp = seqOfOp.replace(s+s,s)
'''============ If to perform operation R then call operationReverse() else if to perform operation S call operationSimplify() ================'''
for x in range (0 , len(seqOfOp)):
if(seqOfOp[x] == r):
expressionTree = operationReverse(expressionTree)
else :
expressionTree = operationSimplify(expressionTree)
print(expressionTree)
return
'''======= Global variables r and s representing operations R and S'''
r = 'R'
s = 'S'
while True:
try:
inputString = input()
'''==================== Calling function solution ======================'''
solution(inputString)
except EOFError:
break