Msgtype Date ConvID message
enquire 12/1 689 I want your car
reply 12/3 689 it is available
reply 12/4 689 rent please?
reply 12/6 689 $200
accept 12/8 689 please pay through CC
reply 12/8 689 thank you, what about fuel?
reply 12/8 689 you have to take care
enquire 12/3 690 Looking for car
reply 12/4 690 available
accept 12/5 690 paid
reply 12/6 690 thank you
我想通过ConvID对这些数据进行分组,并按日期对其进行排序。我希望行直到“Msgtype”=接受该特定的ConvID。旨在分析消息数据,直到特定ConvID接受预订请求。所以对于ConvID = 689,我想要行直到“Msgtype”=接受。 “接受”之后的其余行不是必需的。
例如:ConvID = 689
不需要这两个 Msgtype Date ConvID message
reply 12/8 689 thank you, what about fuel?
reply 12/8 689 you have to take care
类似地,ConvID = 690
不需要此行Msgtype Date ConvID message
reply 12/6 690 thank you
答案 0 :(得分:1)
我认为你可以使用:
mask1 = (df.Msgtype == 'accept')
mask = mask1.groupby([df.ConvID]).apply(lambda x: x.shift().fillna(False).cumsum()) == 0
print (df[mask].sort_values(['ConvID','Date']))
Msgtype Date ConvID message
0 enquire 12/1 689 I want your car
1 reply 12/3 689 it is available
2 reply 12/4 689 rent please?
3 reply 12/6 689 $200
4 accept 12/8 689 please pay through CC
7 enquire 12/3 690 Looking for car
8 reply 12/4 690 available
9 accept 12/5 690 paid
说明:
#mask where is 'accept'
mask1 = (df.Msgtype == 'accept')
print (mask1)
0 False
1 False
2 False
3 False
4 True
5 False
6 False
7 False
8 False
9 True
10 False
Name: Msgtype, dtype: bool
#per group shift, replace NaN by False and cumulative sum
print (mask1.groupby([df.ConvID]).apply(lambda x: x.shift().fillna(False).cumsum()))
0 0
1 0
2 0
3 0
4 0
5 1
6 1
7 0
8 0
9 0
10 1
Name: Msgtype, dtype: int32
#where output of groupby is 0
mask = mask1.groupby([df.ConvID]).apply(lambda x: x.shift().fillna(False).cumsum()) == 0
print (mask)
0 True
1 True
2 True
3 True
4 True
5 False
6 False
7 True
8 True
9 True
10 False
Name: Msgtype, dtype: bool
#boolean indexing and sorting
print (df[mask].sort_values(['ConvID','Date']))
Msgtype Date ConvID message
0 enquire 12/1 689 I want your car
1 reply 12/3 689 it is available
2 reply 12/4 689 rent please?
3 reply 12/6 689 $200
4 accept 12/8 689 please pay through CC
7 enquire 12/3 690 Looking for car
8 reply 12/4 690 available
9 accept 12/5 690 paid
答案 1 :(得分:0)
易:
try:
a = 5
if a <= 10:
raise ValueError
except ValueError:
print("Please enter a value greater than 10")
for name, grp in df.groupby('ConvID'):
grp.sort_values('Date', inplace=True)
accept_date = grp.loc[grp['Msgtype'] == 'accept', 'Date']
req = grp[grp['Date'] < accept_date]
# Or, you can use index, like so:
# grp = grp.sort_values('Date').reset_index(drop=True)
# req = grp.iloc[:grp[grp['Msgtype'] == 'accept'].index.values[0], :]
将只包含您可用于分析的必需行。