我正在尝试下载Google趋势数据,并使用PhantomJS加载页面并提取所需数据。当我在url中使用一个关键字运行我的代码时(例如url:https://www.google.com/trends/explore?date=today%203-m&geo=US&q=Blue),它运行正常。只要我添加第二个关键字(例如url:https://www.google.com/trends/explore?date=today%203-m&geo=US&q=Blue,Red),PhantomJS就不再正确加载页面,我无法找到我需要的数据。 我已经尝试增加浏览器等待的时间,并尝试了许多不同的关键字而没有任何成功。我没有想法,只是不明白为什么我的程序在更改url之后不再有效(两个url的标签和页面结构几乎相同所以问题不在于标签不再具有相同的名称之前) 这是有问题的代码:
# Reading google trends data
google_trend_array = []
url = 'https://www.google.com/trends/explore?date=today%203-m&geo=US&q=Blue,Red'
browser = webdriver.PhantomJS('...\\phantomjs-2.1.1-windows\\bin\\phantomjs.exe')
ran_smooth = False
time_to_sleep = 3
# ran_smooth makes sure that page has loaded and necessary code was extracted, if not it will try to load the page again
while ran_smooth is False:
browser.get(url)
time.sleep(time_to_sleep)
soup = BeautifulSoup(browser.page_source, "html.parser") # BS object to use bs4
table = soup.find('div', {'aria-label': 'A tabular representation of the data in the chart.'})
# If page didn't load, this try will throw an exception
try:
# Copies all the data out of google trends table
for col in table.findAll('td'):
# google has both dates and trend values, the following function ensures that we only read the trend values
if col.string.isdigit() is True:
trend_number = int(col.string)
google_trend_array.append(trend_number)
# program ran through, leave while loop
ran_smooth = True
except AttributeError:
print 'page not loading for term ' + str(term_to_trend) + ', trying again...'
time_to_sleep += 1 # increase time to sleep so that page can load
print google_trend_array
答案 0 :(得分:1)
你应该看pytrends,而不是重新发明轮子。
以下是一个小例子:如何从Google趋势中提取数据框:
import pytrends.request
google_username = "<your_login>@gmail.com"
google_password = "<your_password>"
# connect to Google
pytrend = pytrends.request.TrendReq(google_username, google_password, custom_useragent='My Pytrends Script')
trend_payload = {'q': 'Pizza, Italian, Spaghetti, Breadsticks, Sausage', 'cat': '0-71'}
# trend = pytrend.trend(trend_payload)
df = pytrend.trend(trend_payload, return_type='dataframe')
你会得到:
breadsticks italian pizza sausage spaghetti
Date
2004-01-01 0.0 9.0 34.0 3.0 3.0
2004-02-01 0.0 10.0 32.0 2.0 3.0
2004-03-01 0.0 10.0 32.0 2.0 3.0
2004-04-01 0.0 9.0 31.0 2.0 2.0
2004-05-01 0.0 9.0 32.0 2.0 2.0
2004-06-01 0.0 8.0 29.0 2.0 3.0
2004-07-01 0.0 8.0 34.0 2.0 3.0
[...]