我有一个使用NumPy和SciPy在Python中运行的模拟模型,并且每次迭代都会生成一个2D NumPy数组作为输出。我一直使用matplotlib和imshow函数将此输出显示为图像。但是,我发现了Glumpy,并在其文档页面上说:
由于IPython shell,glumpy可以在交互模式下运行,您可以在更改内容时体验显示数组中的实时更新。
然而,我似乎无法通过他们给出的例子来解决这个问题。基本上我的模型作为单个函数运行,其中有一个很大的for循环来循环我正在运行的迭代次数。在for循环的每次迭代结束时,我想显示数组。目前我正在使用matplotlib将图像保存到png文件中,因为通过matplotlib在屏幕上显示它似乎会冻结python进程。
我确信有一种方法可以用Glumpy做到这一点,我只是不确定如何,而且我找不到任何有用的教程。
答案 0 :(得分:10)
Glumpy文档相当不存在!这是一个简单模拟的示例,将数组可视化与glumpy
对matplotlib
进行比较:
import numpy as np
import glumpy
from OpenGL import GLUT as glut
from time import time
from matplotlib.pyplot import subplots,close
from matplotlib import cm
def randomwalk(dims=(256,256),n=3,sigma=10,alpha=0.95,seed=1):
""" A simple random walk with memory """
M = np.zeros(dims,dtype=np.float32)
r,c = dims
gen = np.random.RandomState(seed)
pos = gen.rand(2,n)*((r,),(c,))
old_delta = gen.randn(2,n)*sigma
while 1:
delta = (1.-alpha)*gen.randn(2,n)*sigma + alpha*old_delta
pos += delta
for ri,ci in pos.T:
if not (0. <= ri < r) : ri = abs(ri % r)
if not (0. <= ci < c) : ci = abs(ci % c)
M[ri,ci] += 1
old_delta = delta
yield M
def mplrun(niter=1000):
""" Visualise the simulation using matplotlib, using blit for
improved speed"""
fig,ax = subplots(1,1)
rw = randomwalk()
im = ax.imshow(rw.next(),interpolation='nearest',cmap=cm.hot,animated=True)
fig.canvas.draw()
background = fig.canvas.copy_from_bbox(ax.bbox) # cache the background
tic = time()
for ii in xrange(niter):
im.set_data(rw.next()) # update the image data
fig.canvas.restore_region(background) # restore background
ax.draw_artist(im) # redraw the image
fig.canvas.blit(ax.bbox) # redraw the axes rectangle
close(fig)
print "Matplotlib average FPS: %.2f" %(niter/(time()-tic))
def gprun(niter=1000):
""" Visualise the same simulation using Glumpy """
rw = randomwalk()
M = rw.next()
# create a glumpy figure
fig = glumpy.figure((512,512))
# the Image.data attribute is a referenced copy of M - when M
# changes, the image data also gets updated
im = glumpy.image.Image(M,colormap=glumpy.colormap.Hot)
@fig.event
def on_draw():
""" called in the simulation loop, and also when the
figure is resized """
fig.clear()
im.update()
im.draw( x=0, y=0, z=0, width=fig.width, height=fig.height )
tic = time()
for ii in xrange(niter):
M = rw.next() # update the array
glut.glutMainLoopEvent() # dispatch queued window events
on_draw() # update the image in the back buffer
glut.glutSwapBuffers() # swap the buffers so image is displayed
fig.window.hide()
print "Glumpy average FPS: %.2f" %(niter/(time()-tic))
if __name__ == "__main__":
mplrun()
gprun()
使用matplotlib
GTKAgg
作为我的后端并使用blit
来避免每次都绘制背景,我可以达到约95 FPS。使用Glumpy
我得到大约250-300 FPS,即使我目前在我的笔记本电脑上设置了相当糟糕的图形设置。话虽如此,Glumpy
更加繁琐,除非你正在处理巨大的矩阵,或者你出于某种原因需要非常高的帧率,我会坚持使用matplotlib
和{ {1}}。
答案 1 :(得分:1)
使用pyformulas 0.2.8,您可以使用pf.screen创建非阻止屏幕:
import pyformulas as pf
import numpy as np
canvas = np.floor(np.random.normal(scale=50, size=(480,640,3)) % 256).astype(np.uint8)
screen = pf.screen(canvas)
while screen.exists():
canvas = np.floor(np.random.normal(scale=50, size=(480,640,3)) % 256).astype(np.uint8)
screen.update(canvas)
#screen.close()
免责声明:我是pyformulas的维护者