使用Glumpy将NumPy数组显示为连续更新图像

时间:2010-10-15 13:15:32

标签: python opengl numpy plot glumpy

我有一个使用NumPy和SciPy在Python中运行的模拟模型,并且每次迭代都会生成一个2D NumPy数组作为输出。我一直使用matplotlib和imshow函数将此输出显示为图像。但是,我发现了Glumpy,并在其文档页面上说:

由于IPython shell,glumpy可以在交互模式下运行,您可以在更改内容时体验显示数组中的实时更新。

然而,我似乎无法通过他们给出的例子来解决这个问题。基本上我的模型作为单个函数运行,其中有一个很大的for循环来循环我正在运行的迭代次数。在for循环的每次迭代结束时,我想显示数组。目前我正在使用matplotlib将图像保存到png文件中,因为通过matplotlib在屏幕上显示它似乎会冻结python进程。

我确信有一种方法可以用Glumpy做到这一点,我只是不确定如何,而且我找不到任何有用的教程。

2 个答案:

答案 0 :(得分:10)

Glumpy文档相当不存在!这是一个简单模拟的示例,将数组可视化与glumpymatplotlib进行比较:

import numpy as np
import glumpy
from OpenGL import GLUT as glut
from time import time
from matplotlib.pyplot import subplots,close
from matplotlib import cm

def randomwalk(dims=(256,256),n=3,sigma=10,alpha=0.95,seed=1):
    """ A simple random walk with memory """
    M = np.zeros(dims,dtype=np.float32)
    r,c = dims
    gen = np.random.RandomState(seed)
    pos = gen.rand(2,n)*((r,),(c,))
    old_delta = gen.randn(2,n)*sigma
    while 1:
        delta = (1.-alpha)*gen.randn(2,n)*sigma + alpha*old_delta
        pos += delta
        for ri,ci in pos.T:
            if not (0. <= ri < r) : ri = abs(ri % r)
            if not (0. <= ci < c) : ci = abs(ci % c)
            M[ri,ci] += 1
        old_delta = delta
        yield M

def mplrun(niter=1000):
    """ Visualise the simulation using matplotlib, using blit for 
    improved speed"""
    fig,ax = subplots(1,1)
    rw = randomwalk()
    im = ax.imshow(rw.next(),interpolation='nearest',cmap=cm.hot,animated=True)
    fig.canvas.draw()
    background = fig.canvas.copy_from_bbox(ax.bbox) # cache the background

    tic = time()
    for ii in xrange(niter):
        im.set_data(rw.next())          # update the image data
        fig.canvas.restore_region(background)   # restore background
        ax.draw_artist(im)          # redraw the image
        fig.canvas.blit(ax.bbox)        # redraw the axes rectangle

    close(fig)
    print "Matplotlib average FPS: %.2f" %(niter/(time()-tic))

def gprun(niter=1000):
    """ Visualise the same simulation using Glumpy """
    rw = randomwalk()
    M = rw.next()

    # create a glumpy figure
    fig = glumpy.figure((512,512))

    # the Image.data attribute is a referenced copy of M - when M
    # changes, the image data also gets updated
    im = glumpy.image.Image(M,colormap=glumpy.colormap.Hot)

    @fig.event
    def on_draw():
        """ called in the simulation loop, and also when the
        figure is resized """
        fig.clear()
        im.update()
        im.draw( x=0, y=0, z=0, width=fig.width, height=fig.height )

    tic = time()
    for ii in xrange(niter):
        M = rw.next()           # update the array          
        glut.glutMainLoopEvent()    # dispatch queued window events
        on_draw()           # update the image in the back buffer
        glut.glutSwapBuffers()      # swap the buffers so image is displayed

    fig.window.hide()
    print "Glumpy average FPS: %.2f" %(niter/(time()-tic))

if __name__ == "__main__":
    mplrun()
    gprun()

使用matplotlib GTKAgg作为我的后端并使用blit来避免每次都绘制背景,我可以达到约95 FPS。使用Glumpy我得到大约250-300 FPS,即使我目前在我的笔记本电脑上设置了相当糟糕的图形设置。话虽如此,Glumpy更加繁琐,除非你正在处理巨大的矩阵,或者你出于某种原因需要非常高的帧率,我会坚持使用matplotlib和{ {1}}。

答案 1 :(得分:1)

使用pyformulas 0.2.8,您可以使用pf.screen创建非阻止屏幕:

import pyformulas as pf
import numpy as np

canvas = np.floor(np.random.normal(scale=50, size=(480,640,3)) % 256).astype(np.uint8)
screen = pf.screen(canvas)

while screen.exists():
    canvas = np.floor(np.random.normal(scale=50, size=(480,640,3)) % 256).astype(np.uint8)
    screen.update(canvas)

#screen.close()

免责声明:我是pyformulas的维护者