我在csv文件中列出了40,000个网页地址。我想在新的csv文件中阅读这些页面,以便csv中的每个单元格都是相关网页的内容。 我可以使用以下代码阅读(解析)单个网页
library(XML)
# Read and parse HTML file
doc.html = htmlTreeParse('',useInternal = TRUE)
# Extract all the paragraphs (HTML tag is p, starting at
# the root of the document). Unlist flattens the list to
# create a character vector.
doc.text = unlist(xpathApply(doc.html, '//p', xmlValue))
# Replace all \n by spaces
doc.text = gsub('\\n', ' ', doc.text)
# Join all the elements of the character vector into a single
# character string, separated by spaces
doc.text = paste(doc.text, collapse = ' ')
是否可以使用具有网页地址的csv作为输入,并获得包含上述所有内容的新文件?
答案 0 :(得分:0)
您可以尝试以下代码。它应该起作用你的目的,但它未经测试,因为我不知道你想看的网站:
library(XML)
library(rvest)
df <- read.csv("Webpage_urls.csv", stringsAsFactors = F)
webpage_parser <- function(x){
x <- read_html(x)
doc.html = htmlTreeParse(x, useInternal = TRUE)
# Extract all the paragraphs (HTML tag is p, starting at
# the root of the document). Unlist flattens the list to
# create a character vector.
doc.text = unlist(xpathApply(doc.html, '//p', xmlValue))
# Replace all \n by spaces
doc.text = gsub('\\n', ' ', doc.text)
# Join all the elements of the character vector into a single
# character string, separated by spaces
doc.text = paste(doc.text, collapse = ' ')
}
all_webpages <- lapply(df, function(x) webpage_parser(x))
Pages <- do.call(rbind, all_webpages)
Parsed_pages <- cbind(df, Pages)
write.csv(Parsed_pages, "All_parsed_pages.csv", row.names = F)
如果我们想要同时,我们可以使用R中的doParallel
库,这将设置多个集群(R的实例),并且应该有助于加快您的流程。
library(doParallel)
# split your webpage list into n vectors and create a list called Split_df
Split_df <- list(df1, df2, df3,..., dfn)
# Here I initiate my cluster
cl <- makeCluster(detectCores()-1)
registerDoParallel(cl)
Parsed_pages <- foreach(i = 1:length(Split_df), .combine = rbind) %dopar%
{
library(rvest)
library(XML)
all_webpages <- lapply(Split_df[[i]], function(x) webpage_parser(x))
Pages <- do.call(rbind, all_webpages)
Parsed_pages <- cbind(Split_df[[i]], Pages)
Parsed_pages
}
stopCluster(cl)
write.csv(Parsed_pages, "All_parsed_pages.csv", row.names = F)