我有一个折线shapefile,它代表了城市道路网络的一部分。我的shapefile包含几个行/街段(在我的例子中为58)。 通过使用R-cran,我想进一步将折线段分成具有相等长度(例如10m)的较小部分。
提供一个想法:
当我将折线shapefile导入R时,我创建了一个数据帧,它看起来像:
# Import the polyline shapefile into a SpatialLinesDataFrame object:
# library(sp)
sp.roads <- readOGR(dsn="/Users/mgv/Documents/project",layer="roads_sr_corr")
# Create a dataframe from the SpatialLinesDataFrame
# library(stplanr)
linedf <- line2df(sp.roads)
str(linedf)
> str(linedf)
'data.frame': 58 obs. of 4 variables:
$ fx: num 13.39991 13.40138 13.40606 13.40232 13.40177 ...
$ fy: num 42.35066 42.35412 42.35599 42.34514 42.34534 ...
$ tx: num 13.40150 13.40119 13.40591 13.40246 13.40182 ...
$ ty: num 42.35026 42.35386 42.35602 42.34530 42.34525 ...
其中(fx,fy,tx,ty)分别是点(x,y)_from和(x,y)_to的经度和纬度,分隔每个段(此处为5)。
我们的想法是获得更密集的折线shapefile,我可以将其用作空间分析,作为一种“网格”,将沿道路收集的地理参考数据点与每个段相关联。
非常感谢您的帮助以及解决此问题的任何建议。
答案 0 :(得分:4)
以下函数将空间线对象的每一行划分为 split_length 长度的段加上剩余的段。它使用一个线段的矢量符号,创建一个单位长度的矢量 u 和要分割的线的方向,可以相乘以创建一个由许多线段组成的较长线(here和here我使用过的参考文献。
SplitLines = function(spatial_line,
split_length = 20,
return.dataframe = F,
plot.results = F) {
# The function splits each line of the spatial line object into segments of a given length
# spatial_line: a spatial line object
# split_length: the length of the segments to split the lines into, in units of the SpatialLine object
# return.dataframe: if true it returns the segments in the form of a dataframe, otherwise in a SpatialLine object
# plot.results:
require(sp)
#### Define support functions ####
# SpatialLines2df extracts start and end point coordinates of each segment of a SpatialLine object
# spatial_line: an object class SpatialLinesDataFrame of the package sp
SpatialLines2df = function(spatial_line) {
df = data.frame(
id = character(),
mline_id = character(),
segment_id = character(),
fx = numeric(),
fy = numeric(),
tx = numeric(),
ty = numeric(),
stringsAsFactors = FALSE
)
for (i in 1:length(spatial_line)) {
coords = spatial_line@lines[[i]]@Lines[[1]]@coords # For each line takes the coords of the vertex
row_nums = 1:(nrow(coords) - 1)
mline_id = formatC(i, width = 9, flag = '0') # Creates id for the line
segment_id = formatC(row_nums, width = 3, flag = '0') # Creates id for each single segment belonging to the line
id = paste0(mline_id, '_', segment_id) # Creates a composite id
for (j in row_nums) {
# For each segment stores ids and coordinates
df[nrow(df) + 1, ] = c(id[j],
mline_id,
segment_id[j],
coords[j, 1],
coords[j, 2],
coords[j + 1, 1],
coords[j + 1, 2])
}
}
row.names(df) = NULL
df$fx = as.numeric(df$fx)
df$fy = as.numeric(df$fy)
df$tx = as.numeric(df$tx)
df$ty = as.numeric(df$ty)
return(df)
}
# linedf2SpatialLines converts a dataframe of IDs and coordinates into a spatial line
# linedf: a data.frame with columns as:
# id = generic ids of the lines,
# fx = coordinates x of the first point of the line
# fy = coordinates y of the first point of the line
# tx = coordinates x of the second point of the line
# tx = coordinates y of the second point of the line
require(sp)
linedf2SpatialLines = function(linedf) {
sl = list()
for (i in 1:nrow(linedf)) {
c1 = cbind(rbind(linedf$fx[i], linedf$tx[i]),
rbind(linedf$fy[i], linedf$ty[i]))
l1 = Line(c1)
sl[[i]] = Lines(list(l1), ID = linedf$id[i])
}
SL = SpatialLines(sl)
return(SL)
}
#### Split the lines ####
# Convert the input SpatialLine object into a dataframe and create an empty output dataframe
linedf = SpatialLines2df(spatial_line)
df = data.frame(
id = character(),
fx = numeric(),
fy = numeric(),
tx = numeric(),
ty = numeric(),
stringsAsFactors = FALSE
)
for (i in 1:nrow(linedf)) {
# For each line of the dataframe, corresponding to a single line of the spatial object
# skips if length is less then split_length
v_seg = linedf[i, ]
seg_length = sqrt((v_seg$fx - v_seg$tx) ^ 2 + (v_seg$fy - v_seg$ty) ^
2) # segment length
if (seg_length <= split_length) {
df[nrow(df) + 1,] = c(paste0(v_seg$id, '_', '0000'),
v_seg$fx,
v_seg$fy,
v_seg$tx,
v_seg$ty)
next()
}
# Create a vector of direction as the line and unit length
# vector v corresponding to the line
v = c(v_seg$tx - v_seg$fx,
v_seg$ty - v_seg$fy)
# vector of direction v and unit length
u = c(v[1] / sqrt(v[1] ^ 2 + v[2] ^ 2), v[2] / sqrt(v[1] ^ 2 + v[2] ^ 2))
# Calculates how many segment the line is split into and the leftover
num_seg = floor(seg_length / split_length)
seg_left = seg_length - (num_seg * split_length)
# Add to the output dataframe each segment plus the leftover
for (i in 0:(num_seg - 1)) {
# Add num_seg segments
df[nrow(df) + 1,] = c(
paste0(v_seg$id, '_', formatC(i, width = 4, flag = '0')),
v_seg$fx + u[1] * split_length * i,
v_seg$fy + u[2] * split_length * i,
v_seg$fx + u[1] * split_length * (i + 1),
v_seg$fy + u[2] * split_length * (i + 1)
)
}
df[nrow(df) + 1,] = c(
paste0(v_seg$id, '_', formatC(
num_seg, width = 4, flag = '0'
)),
# Add leftover segment
v_seg$fx + u[1] * split_length * num_seg,
v_seg$fy + u[2] * split_length * num_seg,
v_seg$tx,
v_seg$ty
)
}
#### Visualise the results to check ####
if (plot.results) {
plot(spatial_line)
coords = cbind(as.numeric(df$fx), as.numeric(df$fy))
coords = rbind(coords, as.numeric(df$tx[nrow(df)]), as.numeric(df$ty)[nrow(df)])
sp_points = SpatialPoints(coords)
plot(sp_points, col = 'red', add = T)
}
#### Output ####
df$fx = as.numeric(df$fx)
df$fy = as.numeric(df$fy)
df$tx = as.numeric(df$tx)
df$ty = as.numeric(df$ty)
if (return.dataframe) {
return(df)
} # Return a dataframe
sl = linedf2SpatialLines(df)
return(sl) # Return a SpatialLine object
}
您可以使用以下方法测试该功能:
Sl = SpatialLines(list(Lines(list(Line(cbind(c(1,2,3, 4),c(3,2,2,4)))), ID="a")))
plot(Sl)
Sl_split = SplitLines(Sl, split_length = 0.1, return.dataframe = FALSE, plot.results = TRUE)
我确信这个功能可以用更简洁有效的方式编写。我已经在git repository创建了一个包,以防有人愿意贡献。
答案 1 :(得分:1)
Duccio提出的解决方案会重置每个新细分的间距。我将脚本修改为运行间距的版本。差异在下面的图像中可视化。
所需的间距(由绿色条的长度表示)始终从每个段开始。与前一段的剩余距离不会转移到下一段。因此,在整条线上产生的间距不恒定。
所需间距沿圆角转移。这种方法证明了这些点总是与原始线相关的所需间距。但是,这里的结果点之间的间距都不是常数。此外,这种方法产生的线比原线短。
此效果会随着分辨率的提高而降低。
或者可以通过将可选参数“add_original_points”设置为TRUE来防止。
注意:“正确使用的算法”取决于您的应用程序。 免责声明:我的版本完全基于Duccio A的解决方案,我给予他充分的信任。
我的方法不使用Line对象(sp包),但完全依赖于数据框。因此,我不想分叉原来的github repos。
完整的代码是:
resample_polyline = function(polyline, interval_length = 20, add_original_points = TRUE, add_final_point = FALSE) {
# The function splits a polyline into segments of a given length.
# polyline: a spatial polyline data frame
# interval_length: the length of the segments to split the lines into, in units of the polyline coordinates
# add_original_points: whether or not the original points of the polyline should be added to the resulting line
# if set FALSE, the resulting line will be shorter
# add_final_point: whether or not the final point of the polyline should be added to the resulting line
# transform input polyline
linedf = data.frame(
x = polyline$x[1:nrow(polyline)-1],
y = polyline$y[1:nrow(polyline)-1],
x2 = polyline$x[2:nrow(polyline)],
y2 = polyline$y[2:nrow(polyline)]
)
# prepare output
df = data.frame(
x = numeric(),
y = numeric()
)
residual_seg_length = 0
for (i in 1:nrow(linedf)) {
# for each line of the dataframe calculate segment length
v_seg = linedf[i, ]
seg_length = sqrt((v_seg$x - v_seg$x2) ^ 2 + (v_seg$y - v_seg$y2) ^ 2)
# create a vector of direction for the segment
v = c(v_seg$x2 - v_seg$x, v_seg$y2 - v_seg$y)
# unit length
u = c(v[1] / sqrt(v[1] ^ 2 + v[2] ^ 2), v[2] / sqrt(v[1] ^ 2 + v[2] ^ 2))
# calculate number of segment the segment is split into
num_seg = floor((seg_length - residual_seg_length) / interval_length)
# skip if next vertex is before interval_length
if(num_seg >= 0) {
# add interpolated segments
for (i in 0:(num_seg)) {
df[nrow(df) + 1,] = c(
v_seg$x + u[1] * residual_seg_length + u[1] * interval_length * i ,
v_seg$y + u[2] * residual_seg_length + u[2] * interval_length * i
)
}
# add original point (optional)
if(add_original_points){
df[nrow(df) + 1,] = c(
v_seg$x2,
v_seg$y2
)
}
} else {
# add original point (optional)
if(add_original_points){
df[nrow(df) + 1,] = c(
v_seg$x2,
v_seg$y2
)
}
residual_seg_length = residual_seg_length - seg_length
next()
}
# calculate residual segment length
residual_seg_length = interval_length - ((seg_length - residual_seg_length) - (num_seg * interval_length))
}
# add final point (optional)
if(add_final_point){
df = rbind(df, data.frame(
x = tail(polyline$x, n=1),
y = tail(polyline$y, n=1)
))
}
return(df)
}
用
测试polyline = data.frame(
x = c(-5,1,5,7,8,12,14,16,17,13), # x
y = c(0,11,3,8,2,15,9,13,15,23) # y
)
plot(polyline$x, polyline$y, type="l", asp=1, lwd=1)
points(polyline$x, polyline$y, pch=4, cex=4, col="gray")
polyline2 = resample_polyline(polyline, interval_length = 5, add_final_point = FALSE, add_original_points = TRUE)
lines(polyline2$x, polyline2$y, col="red", lty=4, lwd=3)
points(polyline2$x, polyline2$y, pch=19)
legend("topleft",
c("original points", "added points", "resulting line"),
pch = c(4, 19, NA),
lty = c(NA, NA, 2),
pt.cex = c(4,1,1),
col = c("gray", "black", "red")
)