我正在尝试从UVA问题集中计算第1500个丑陋的数字。 136。
我的算法很简单:
步骤:
使用tmp变量 cur 来保存 ith 丑陋数字的索引。
计算 un [cur] x 2 , un [cur] x 3 和 un [cur] x 5 。< / p>
使用集合消除重复项并将其存储到 un
对数组进行排序,以确保 un [i + 1] 始终是最小的。
增加cur变量,使其成为 i + 1th 丑陋数字的索引。
重复直到阵列中生成了1500个丑陋的数字。
我的代码:
# include<iostream>
# include<set>
# include<algorithm>
using namespace std;
int main(void) {
long long un[1500] = { 0 };
set<long long> us;
un[0] = 1;
us.insert(1);
int i = 1,unE = 0,cur = 0;
while(true) {
unE = 0;
sort(un,un+i);
if(us.find(un[cur]*2) == us.end()) {
un[i+unE] = un[cur]*2;
us.insert(un[i+unE]);
unE++;
}
if(i + unE > 1500 - 1) {
break;
}
if(us.find(un[cur]*3) == us.end()) {
un[i+unE] = un[cur]*3;
us.insert(un[i+unE]);
unE++;
}
if(i + unE > 1500 - 1) {
break;
}
if(us.find(un[cur]*5) == us.end()) {
un[i+unE] = un[cur]*5;
us.insert(un[i+unE]);
unE++;
}
i+=unE;
cur++;
}
sort(un,un+1500);
for(int i = 0; i < 1500; i++) {
cout << un[i] << " ";
}
cout << un[1500-1] << endl;
}
我的算法没有输出正确的数字,即859963392.我得到一个更大的数字。有人可以指出我正确的方向吗?
答案 0 :(得分:2)
更简单的代码但更难以阅读解决方案is:
#include <iostream>
using namespace std;
int main(){
const int n = 1499;
int a [ 1500 ];
int p1(0), p2(0), p3(0), end(0);
a [ 0 ] = 1;
while ( end < n ){
while ( a [ p1 ] * 2 <= a [ end ] ) ++ p1;
while ( a [ p2 ] * 3 <= a [ end ] ) ++ p2;
while ( a [ p3 ] * 5 <= a [ end ] ) ++ p3;
if ( a [ p1 ] * 2 < a [ p2 ] * 3 && a [ p1 ] * 2 < a [ p3 ] * 5 )
a [ ++ end ] = a [ p1 ++ ] * 2;
else if ( a [ p2 ] * 3 < a [ p3 ] * 5 )
a [ ++ end ] = a [ p2 ++ ] * 3;
else a [ ++ end ] = a [ p3 ++ ] * 5;
}
cout << "The 1500'th ugly number is " << a [ end ] << ".\n";
return 0;
}
对于记录
,Bruteforce解决方案,只需检查所有数字是否丑陋,并保持丑陋计数在我的计算机上花费超过20秒,并使用以下代码:
//uva136 preparer
#include <iostream>
using namespace std;
typedef long long ll;
bool is_ugly(int in)
{
while( true)
{
if(in % 5 ==0)
in /= 5;
else if( in %2==0)
in /=2 ;
else if (in % 3 == 0 )
in/=3;
else
break;
}
if(in==1)
return true ;
else
return false ;
}
int main()
{
int c=0 ;
ll j=6;
int i=6;
for(j =6;(i<1501) ; j++)
{
if(isugly(j))
i++;
}
cout<<j-1<<endl<<double(clock())/CLOCKS_PER_SEC;// because at the last iteration of four , j is updated to j+1 and we should minus it by one to make it no count .
return 0;
}
答案 1 :(得分:2)
您的算法几乎是正确的,但错误是您不应该在生成1500个数字时停止,而是在“curr”达到第1500个数字时停止。这是因为并非'curr'之后的所有丑陋数字都已生成,你只能确定在'curr'之前你有任何丑陋的数字。优化算法的另一个建议是在'curr'之后为所有数字使用堆,这样你不需要每次都对整个数组进行排序,而且根本不需要使用集合。这是我的代码:
#include<iostream>
#include<queue>
#include<vector>
using namespace std;
vector<long long> un; //using vector because we don't know how many ugly numbers we will need to generate
//If we decide to use an array (the way you did) it is better to define it outside of main().
priority_queue<long long> nun; //priority queue used for storing the next ugly numbers
const int TARGET=1500; //always good to store magical numbers as constants instead of having them appear all over the code
int main()
{
un.push_back(1); //adding the first ugly number
for (int i=0;i<TARGET-1;++i)
/*
We have already found the first ugly number (1),
so we only need to find TARGET-1 more.
*/
{
nun.push(-un[i]*2);
nun.push(-un[i]*3);
nun.push(-un[i]*5);
//adding the next ugly numbers to the heap
/*
Adding them as negative numbers because priority_queue
keeps the largest number on the top and we need the smallest.
*/
while (-nun.top()==un[i])
{
nun.pop();
//removing duplicates
/*
We can prove that we will never have more than 3 copies
of a number in the heap and thus that this will not
affect the performance.
1) We will never have more than one copy of a number in un.
2) Each number can be added to nun in 3 different ways:
by multiplying a number form un by 2, 3 or 5.
*/
}
un.push_back(-nun.top());
nun.pop();
//adding the next ugly number to un
}
cout<<un[TARGET-1]<<endl;
/*
Indexing starts at 0 so the TARGETth number is at index TARGET-1.
*/
return 0;
}
我的程序确实输出了859963392,这是正确答案。
编辑:在考虑了一下之后,我把它归结为线性复杂性。这是代码:
#include<iostream>
#include<vector>
//#include<conio.h>
using namespace std;
vector<long long> un; //using vector because we don't know how many ugly numbers we will need to generate
//If we decide to use an array (the way you did) it is better to define it outside of main().
const int TARGET=1500; //always good to store magical numbers as constants instead of having them appear all over the code
int l2=0,l3=0,l5=0; //store the indexes of the last numbers multiplied by 2, 3 and 5 respectively
int main()
{
un.push_back(1); //adding the first ugly number
for (int i=0;i<TARGET-1;++i)
/*
We have already found the first ugly number (1),
so we only need to find TARGET-1 more.
*/
{
un.push_back(min(min(un[l2]*2,un[l3]*3),un[l5]*5));
//adding the next ugly number to un
if (un[i+1]==un[l2]*2) //checks if 2 multiplied by the number at index l2 has been included in un, if so, increment l2
{
++l2;
}
if (un[i+1]==un[l3]*3) //checks if 3 multiplied by the number at index l3 has been included in un, if so, increment l3
{
++l3;
}
if (un[i+1]==un[l5]*5) //checks if 5 multiplied by the number at index l5 has been included in un, if so, increment l5
{
++l5;
}
/*
Basically only one of the variables l2, l3 and l5 (the one we used) will be incremented in a cycle unless we can get a number
in more than one way, in which case incrementing more than one of them is how we avoid duplicates.
Uncomment the commented code to observe this.
P.S. @PaulMcKenzie I can deal without a debugger just fine.
*/
//cerr<<i<<": "<<l2<<"("<<un[l2]*2<<") "<<l3<<"("<<un[l3]*3<<") "<<l5<<"("<<un[l5]*5<<") "<<un[i+1]<<endl;
//getch();
}
cout<<un[TARGET-1]<<endl;
/*
Indexing starts at 0 so the TARGETth number is at index TARGET-1.
*/
return 0;
}
EDIT2:第一个解决方案根本不需要矢量,因为它不使用以前的数字。因此,您可以使用单个变量以记忆方式对其进行优化。这是一个实现:
#include<iostream>
#include<queue>
#include<vector>
using namespace std;
long long un; //last ugly number found
priority_queue<long long> nun; //priority queue used for storing the next ugly numbers
const int TARGET=1500; //always good to store magical numbers as constants instead of having them appear all over the code
int main()
{
un=1; //adding the first ugly number
for (int i=0;i<TARGET-1;++i)
/*
We have already found the first ugly number (1),
so we only need to find TARGET-1 more.
*/
{
nun.push(-un*2);
nun.push(-un*3);
nun.push(-un*5);
//adding the next ugly numbers to the heap
/*
Adding them as negative numbers because priority_queue
keeps the largest number on the top and we need the smallest.
*/
while (-nun.top()==un)
{
nun.pop();
//removing duplicates
/*
We can prove that we will never have more than 3 copies
of a number in the heap and thus that this will not
affect the performance.
1) We will never have more than one copy of a number in un.
2) Each number can be added to nun in 3 different ways:
by multiplying a number form un by 2, 3 or 5.
*/
}
un=-nun.top();
nun.pop();
//adding the next ugly number to un
}
cout<<un<<endl;
/*
Indexing starts at 0 so the TARGETth number is at index TARGET-1.
*/
return 0;
}
总之,我们有两个相互竞争的解决方案(假设我们不需要存储数字,那么与第一个相比,最后一个解决方案在各个方面都更好(或者更差)。其中一个具有线性时间复杂度,以及线性存储器复杂度(但它不是N,因为更优化的解决方案将释放用于我们不再需要的数字的存储器。但是作为N随着N接近无穷大,内存复杂度接近N.)而另一个具有NlogN时间复杂度和我们需要确定的一些内存复杂性,因此l5越来越大l5落后于l2和l3。每次我们向堆中添加3个数字然后取出1到3之间的任何数字(因为一个数字最多可以在堆中3次,我们已经取出其中一个副本,我们可以删除其他2个重复数) 。因此,它的存储器复杂度可以是常数和2N之间的任何值。我会在进行进一步分析后编辑这个答案,但我的第一印象是,对于大Ns,内存复杂度将小于N.
在更进一步的结论中,线性解决方案速度更快,NlogN解决方案可能在记忆方面更好,但尚未得到证实。
EDIT3:NlogN解决方案肯定更差。随着N越来越大,越来越多的数字可以被2,3和5整除,直到几乎所有数字都可以被所有三个整除。因为在几乎每个循环中,我们从堆中删除3个数字,因此它不会增长。因此当N接近无穷大时,存储器复杂度接近常数。您可以通过在每个周期或最后输出优先级队列的大小来测试这一点。例如,当N = 5000时,堆的大小是1477.但是当N达到10000时,大小只有2364。
似乎这个解决方案会更好,但实际上我在原始分析中犯了一个错误。 l5并没有越来越落后。正如我对大N所解释的那样,所有数字都可以被所有三个2,3和5整除。因为l5几乎每次都会增加,而我们需要存储的数字的数量几乎保持不变。例如,当N = 5000时,l5 = 4308,并且由于我们只需要存储l5和N之间的数字,我们需要存储690个数字。当N达到10000时,l5 = 8891,我们需要存储1107个数字。它几乎是双倍的,所以它接近常数并不明显,但如果我们进行更多的测试,那么显然它正在减速。
从理论上讲,内存复杂性应该以大约相同的速率减慢,但堆大小的初始增加会使它占用更多内存。
总之(第三次是魅力)线性解决方案在速度和记忆方面都更好(如果动态内存分配在我的解决方案中实现则不是,因为对于如此小的N-1500不需要)。