如何使用R中的dplyr将数据框中的行与多列配对?

时间:2016-07-11 01:32:02

标签: r dplyr tidyr

我有一个数据框,其中包含来自对照和实验组的多个观察结果,每个受试者都有重复。

以下是我的数据框示例:

subject  cohort    replicate val1   val2
  A     control       1       10     0.1
  A     control       2       15     0.3
  A     experim       1       40     0.7
  A     experim       2       45     0.9
  B     control       1        5     0.3     
  B     experim       1       30     0.0
  C     control       1       50     0.5
  C     experim       1       NA     1.0

我希望将每个对照观察与每个值的相应实验对配对,以计算对之间的比率。所需的输出看起来像这样:

subject  replicate   ratio_val1   ratio_val2
  A         1           4             7
  A         2           3             3
  B         1           6             0
  C         1          NA             2 

理想情况下,我希望通过dplyr和管道实现这一点。

2 个答案:

答案 0 :(得分:1)

summarize_atdplyr对数据进行分组后,您可以使用val1中的val2功能汇总列subjectreplicate。使用[cohort == ...]相应地获取实验和控制组中的值以进行除法:

library(dplyr)
df %>% group_by(subject, replicate) %>% 
       summarize_at(vars(contains('val')), 
                    funs("ratio" = .[cohort == "experim"]/.[cohort == "control"]))

# Source: local data frame [4 x 4]
# Groups: subject [?]
#
#   subject replicate val1_ratio val2_ratio
#    <fctr>     <int>      <dbl>      <dbl>
# 1       A         1          4          7
# 2       A         2          3          3
# 3       B         1          6          0
# 4       C         1         NA          2

答案 1 :(得分:1)

我们可以通过将数据集重新整形为“广泛”格式来使用data.table

library(data.table)
dcast(setDT(df1), subject+replicate~cohort, value.var = c("val1", "val2"))[,
          paste0("ratio_", names(df1)[4:5]) := Map(`/`, .SD[,  
      grep("experim", names(.SD)), with = FALSE], 
       .SD [, grep("control", names(.SD)), with = FALSE])][, (3:6) := NULL][]
#    subject replicate ratio_val1 ratio_val2
# 1:       A         1          4          7
# 2:       A         2          3          3
# 3:       B         1          6          0 
# 4:       C         1         NA          2

或者在使用'subject','replicate'分组之后,我们遍历'val'列并将'val'的'val'的相应元素除以'control'

setDT(df1)[, lapply(.SD[, grep("val", names(.SD)), with = FALSE], 
   function(x) x[cohort =="experim"]/x[cohort =="control"]) ,
               by = .(subject, replicate)]

或者我们可以使用gather/spread

中的tidyr
library(dplyr)
library(tidyr)
df1 %>%
   gather(Var, Val, val1:val2) %>%
   spread(cohort, Val) %>% 
   group_by(subject, replicate, Var) %>%
   summarise(ratio = experim/control) %>% spread(Var, ratio)
#    subject replicate  val1  val2
#      <chr>     <int> <dbl> <dbl>
# 1       A         1     4     7
# 2       A         2     3     3
# 3       B         1     6     0
# 4       C         1    NA     2