我觉得我的基本问题是如何在一个系列中回归多个系列。虽然我的系列在时间上是不相等的,即使我使用相同的时间长度系列库存和基准(我可以提供我在需要时手动相等的数据)我得到一个错误。我想估计一个市场模型(即,对于所有股票,每天对基准回报的股票回报进行回归),并以长格式从回归中得出β值的数据框。因此,对于提供的样本,β值数据框中将有4个beta值(ABC为2,XYZ为2)。这是两个股票价格的样本
idf <- structure(list(Firm = c("ABC", "ABC", "ABC", "ABC", "ABC", "ABC", "ABC",
"ABC", "ABC", "ABC", "ABC", "ABC", "ABC", "ABC", "ABC", "XYZ", "XYZ", "XYZ",
"XYZ", "XYZ", "XYZ", "XYZ", "XYZ", "XYZ", "XYZ", "XYZ", "XYZ", "XYZ", "XYZ",
"XYZ"), Date = structure(c(NA, 1451642400, 1451646000, 1451649600, 1451653200,
1451656800, 1451660400, 1451664000, 1451898000, 1451901600, 1451905200,
1451908800, 1451912400, 1451916000, 1451919600, NA, 1451642400, 1451646000,
1451649600, 1451653200, 1451656800, 1451660400, 1451664000, 1451898000,
1451901600, 1451905200, 1451908800, 1451912400, 1451916000, 1451919600),
tzone = "UTC", class = c("POSIXct", "POSIXt")), Price = c(1270.9, 1277,
1273.25, 1273.85, 1273.75, 1272, 1265.35, 1265.35, 1253.1, 1248.1, 1242,
1248.15, 1241.1, 1246.5, 1242.5, 225.75, 225.7, 225.5, 225.45, 228.6, 227.7,
227.8, 227.8, 226, 225.1, 222.35, 222.25, 221.1, 221.2, 220.7), rt = c(NA,
0.00478826614451489, -0.0029408902678254, 0.000471124032113579,
-7.8505259892836e-05, -0.00137484063686699, -0.00524170116535849, 0,
-0.00972828256347036, -0.00399808624683118, -0.00489941143098349,
0.00493947152112462, -0.00566437187907365, 0.00434154082813709,
-0.00321414499282824, NA, -0.000221508473604359, -0.000886524880757023,
-0.000221754075639957, 0.0138753464936165, -0.00394477829101625,
0.000439077943387822, 0, -0.00793305174079517, -0.00399025135959974,
-0.0122920309559813, -0.000449842562691316, -0.00518778653061336,
0.000452181784779349, -0.00226295638548901), day = structure(c(NA, 16801,
16801, 16801, 16801, 16801, 16801, 16801, 16804, 16804, 16804, 16804, 16804,
16804, 16804, NA, 16801, 16801, 16801, 16801, 16801, 16801, 16801, 16804,
16804, 16804, 16804, 16804, 16804, 16804), class = "Date")),
.Names = c("Firm", "Date", "Price", "rt", "day"),
row.names = c(NA, -30L), class = c("tbl_df", "data.frame"))
和基准指数的样本
imdf <- structure(list(Date = structure(c(NA, 1451642400, 1451646000, 1451649600,
1451653200, 1451656800, 1451660400, 1451664000, 1451898000, 1451901600,
1451905200, 1451908800, 1451912400, 1451916000, 1451919600, 1451923200),
class = c("POSIXct", "POSIXt"), tzone = "UTC"), Price = c(3443.1, 3450.5,
3453.85, 3447.9, 3456.9, 3468.45, 3472.1, 3472.1, 3484.75, 3466.45, 3417.5,
3416.05, 3401, 3425.75, 3425.25, 3425.25), rt = c(NA, 0.0021469197059254,
0.000970402793278424, -0.00172420081111291, 0.00260688364525663,
0.00333557458000655, 0.00105178994070698, 0, 0.0036367074012027,
-0.00526529010184795, -0.0142217259100423, -0.000424376794422088,
-0.00441540679648789, 0.00725091981911596, -0.000145964093093198,
0), day = structure(c(NA, 16801, 16801, 16801, 16801, 16801, 16801, 16801,
16804, 16804, 16804, 16804, 16804, 16804, 16804, 16804), class = "Date")),
.Names = c("Date", "Price", "rt", "day"), row.names = c(NA, -16L),
class = c("tbl_df", "tbl", "data.frame"))
以下是我基于dplyr
的代码,用于通过回归基准回报的日内回报来估算两天股票ABC和XYZ的当前测试版。
require(dplyr)
q3 <- idf %>%
group_by(Firm, day) %>%
summarise(Beta = PerformanceAnalytics::CAPM.beta(idf$rt, imdf$rt)) %>%
na.omit()
但它会出现以下错误:
Error: The data cannot be converted into a time series. If you are trying to pass in names from a data object with one column, you should use the form 'data[rows, columns, drop = FALSE]'. Rownames should have standard date formats, such as '1985-03-15'.
有关
q3 <- idf %>%
group_by(Firm, day) %>%
summarise(Beta = coef(summary(lm(idf$rt~imdf$rt)))[2,1]) %>%
na.omit()
我收到以下错误:
Error: error in evaluating the argument 'object' in selecting a method for function 'summary': Error in model.frame.default(formula = idf$rt ~ imdf$rt, drop.unused.levels = TRUE) : variable lengths differ (found for 'imdf$rt')`
我还根据聚合函数尝试了以下内容:
beta.est= function(x) coef(summary(lm(x~imdf$rt)))[2,1]
betas = aggregate(cbind(rt) ~ Firm + day , idf, FUN = beta.est)
但它也有同样的错误:
Error in summary(lm(x ~ imdf$rt)) : error in evaluating the argument 'object' in selecting a method for function 'summary': Error in model.frame.default(formula = x ~ imdf$rt, drop.unused.levels = TRUE) : variable lengths differ (found for 'imdf$rt')
然后我尝试了'for loop':
betas=list()
for(i in idf$Firm ){
for(j in idf$day){
betas$day= coef(summary(lm(idf[i,4]|j~imdf$rt|j)))[2,1]}}
再一次,我明白了:
Error in summary(lm(idf[i, 4] | j ~ imdf$rt | j)) : error in evaluating the argument 'object' in selecting a method for function 'summary': Error in model.frame.default(formula = idf[i, 4] | j ~ imdf$rt | j, drop.unused.levels = TRUE) : variable lengths differ (found for 'imdf$rt | j')
当我对股票和基准使用相等的时间长度系列时,我得到以下错误:
Error in summary(lm(idf[i, 4] | j ~ imdf$rt | j)) : error in evaluating the argument 'object' in selecting a method for function 'summary': Error in model.frame.default(formula = idf[i, 4] | j ~ imdf$rt | j, drop.unused.levels = TRUE) : variable lengths differ (found for 'imdf$rt | j')
虽然以上代码用于估算当前的β值,但如果我还可以回归股票基准指数的滞后量,那将是很好的。请帮助我。
答案 0 :(得分:5)
我希望你不介意我使用一些额外的包。我认为dplyr
,tidyr
,purrr
和broom
的组合可以简化多个线性回归:
为确保我们不会将数据列名称与基准列名称混淆,我们只需添加基准名称:
names(imdf) <- paste("bm1", names(imdf), sep ="_")
您还可以添加滞后日期变量和/或加入其他基准
set.seed(123)
imdf$bm1_Date_lag <- imdf$bm1_Date - 3600 # shift Date by 1 hour
imdf$bm2_rt <- rnorm(nrow(imdf), sd = 0.005) # add a dummy benchmark
首先,您必须按Firm
和day
对数据进行分组,将其与Date
上的基准数据相结合并嵌套,这会为每个组创建data.frame
名为data
,包含所有其他变量。
idf_grouped <- idf %>% group_by(Firm, day) %>%
left_join(imdf, by = c("Date" = "bm1_Date")) %>%
nest()
删除没有day
值的组,以便您可以在每个组中插入线性模型,并将其添加为map
purrr
的新列。您可以一步为多个模型执行此操作。
idf_grouped <- idf_grouped %>% filter(!is.na(day)) %>%
mutate(model = map(data,~lm(rt~bm1_rt, data = .)),
model2 = map(data,~lm(rt~bm2_rt, data = .)))
要提取线性模型的系数,我更喜欢tidy
中的broom
,因为它返回data.frame
,它是 - dplyr
的上下文 - 更容易处理。 unnest()
会将您的数据转换回单个data.frame
。由于您对截距不感兴趣,我们会对bm1_rt
idf_grouped %>%
unnest(bm1 = model %>% map(tidy, quick = TRUE),
bm2 = model2 %>% map(tidy, quick = TRUE),.sep = "_") %>%
filter(bm1_term == "bm1_rt")
## Firm day bm1_term bm1_estimate bm2_term bm2_estimate
## <chr> <date> <fctr> <dbl> <fctr> <dbl>
## 1 ABC 2016-01-01 bm1_rt 0.08879514 bm2_rt -0.2781275
## 2 ABC 2016-01-04 bm1_rt 0.25888489 bm2_rt 0.3845765
## 3 XYZ 2016-01-01 bm1_rt 0.66791986 bm2_rt -0.2891714
## 4 XYZ 2016-01-04 bm1_rt 0.45735812 bm2_rt -0.5014824
要在滞后的基准测试中计算这些测试版,只需在第一步中加入"Date" = "bm1_Date_lag"
。
编辑:为了实现行业回报,您必须拥有每家公司所属行业的映射。为了便于说明,我只是添加了另一家公司"DEF"
作为"XYZ"
的副本,我将其映射到与"ABC"
相同的行业
idf_2 <- idf %>% filter(Firm == "XYZ") %>% mutate(Firm = "DEF") %>% bind_rows(idf)
firm_map <- data.frame(Firm = c("ABC", "DEF", "XYZ"), Industry = c(1,1,2), stringsAsFactors = FALSE)
只需将其加入idf_2
idf_map <- idf_2 %>% left_join(firm_map, by = "Firm")
并计算例如。每个行业的平均回报
idf_map %>% left_join(idf_map %>% group_by(Industry, Date) %>%
summarise(ind_rt = mean(rt, na.rm = TRUE)), by = c("Industry", "Date"))
现在ind_rt
可以用作回归中的解释变量。