我有以下pandas df:
import pandas as pd
import numpy as np
pd_df = pd.DataFrame({'Qu1': ['apple', 'potato', 'cheese', 'banana', 'cheese', 'banana', 'cheese', 'potato', 'egg'],
'Qu2': ['sausage', 'banana', 'apple', 'apple', 'apple', np.nan, 'banana', 'banana', 'banana'],
'Qu3': ['apple', 'potato', 'sausage', 'cheese', 'cheese', 'potato', 'cheese', 'potato', 'egg']})
我想仅在where()
和Qu1
两列上实施Qu2
并保留其余列
original stackoverflow question
,所以我创建了pd1
pd1 = pd_df.where(pd_df.apply(lambda x: x.map(x.value_counts()))>=2,
"other")[['Qu1', 'Qu2']]
然后我将剩余的pd_df
,pd_df['Qu3']
添加到pd1
pd1['Qu3'] = pd_df['Qu3']
pd_df = []
我的问题是:最初我想在where()
部分执行df
并按原样保留其余列,因此上述代码对于大型数据集可能会有危险?我可以这样破坏原始数据吗?如果是,最好的方法是什么?
非常感谢!
答案 0 :(得分:1)
您可以明确地获取原始df的copy
,然后覆盖该df的选择:
In [40]:
pd1 = pd_df.copy()
pd1[['Qu1', 'Qu2']] = pd1[['Qu1', 'Qu2']].where(pd_df.apply(lambda x: x.map(x.value_counts()))>=2,
"other")
pd1
Out[40]:
Qu1 Qu2 Qu3
0 other other apple
1 potato banana potato
2 cheese apple sausage
3 banana apple cheese
4 cheese apple cheese
5 banana other potato
6 cheese banana cheese
7 potato banana potato
8 other banana egg
所以这里的不同之处在于我们只对df的一部分进行操作,而不是整个df,然后选择感兴趣的cols
<强>更新强>
如果你想覆盖那些cols,那么只需选择那些:
In [48]:
pd_df[['Qu1', 'Qu2']] = pd_df[['Qu1', 'Qu2']].where(pd_df.apply(lambda x: x.map(x.value_counts()))>=2,
"other")
pd_df
Out[48]:
Qu1 Qu2 Qu3
0 other other apple
1 potato banana potato
2 cheese apple sausage
3 banana apple cheese
4 cheese apple cheese
5 banana other potato
6 cheese banana cheese
7 potato banana potato
8 other banana egg