在python中捕获性能的异常

时间:2016-04-15 08:57:32

标签: python performance exception-handling

我知道python中的异常在try时速度很快,但在捕获时它可能很昂贵。

这是否意味着:

try:
   some code
except MyException:
   pass

比这快吗?

try:
   some code
except MyException as e:
   pass

4 个答案:

答案 0 :(得分:8)

除了弗朗西斯科的答案之外,似乎捕获的(相对)昂贵部分之一是异常匹配:

>>> timeit.timeit('try:\n    raise KeyError\nexcept KeyError:\n    pass', number=1000000 )
1.1587663322268327
>>> timeit.timeit('try:\n    raise KeyError\nexcept:\n    pass', number=1000000 )
0.9180641582179874

查看(CPython 2)反汇编:

>>> def f():
...     try:
...         raise KeyError
...     except KeyError:
...         pass
... 
>>> def g():
...     try:
...         raise KeyError
...     except:
...         pass
... 
>>> dis.dis(f)
  2           0 SETUP_EXCEPT            10 (to 13)

  3           3 LOAD_GLOBAL              0 (KeyError)
              6 RAISE_VARARGS            1
              9 POP_BLOCK           
             10 JUMP_FORWARD            17 (to 30)

  4     >>   13 DUP_TOP             
             14 LOAD_GLOBAL              0 (KeyError)
             17 COMPARE_OP              10 (exception match)
             20 POP_JUMP_IF_FALSE       29
             23 POP_TOP             
             24 POP_TOP             
             25 POP_TOP             

  5          26 JUMP_FORWARD             1 (to 30)
        >>   29 END_FINALLY         
        >>   30 LOAD_CONST               0 (None)
             33 RETURN_VALUE        
>>> dis.dis(g)
  2           0 SETUP_EXCEPT            10 (to 13)

  3           3 LOAD_GLOBAL              0 (KeyError)
              6 RAISE_VARARGS            1
              9 POP_BLOCK           
             10 JUMP_FORWARD             7 (to 20)

  4     >>   13 POP_TOP             
             14 POP_TOP             
             15 POP_TOP             

  5          16 JUMP_FORWARD             1 (to 20)
             19 END_FINALLY         
        >>   20 LOAD_CONST               0 (None)
             23 RETURN_VALUE        

请注意,catch块无论如何都会加载Exception,并将其与KeyError匹配。的确,看except KeyError as ke案例:

>>> def f2():
...     try:
...         raise KeyError
...     except KeyError as ke:
...         pass
... 
>>> dis.dis(f2)
  2           0 SETUP_EXCEPT            10 (to 13)

  3           3 LOAD_GLOBAL              0 (KeyError)
              6 RAISE_VARARGS            1
              9 POP_BLOCK           
             10 JUMP_FORWARD            19 (to 32)

  4     >>   13 DUP_TOP             
             14 LOAD_GLOBAL              0 (KeyError)
             17 COMPARE_OP              10 (exception match)
             20 POP_JUMP_IF_FALSE       31
             23 POP_TOP             
             24 STORE_FAST               0 (ke)
             27 POP_TOP             

  5          28 JUMP_FORWARD             1 (to 32)
        >>   31 END_FINALLY         
        >>   32 LOAD_CONST               0 (None)
             35 RETURN_VALUE    

唯一的区别是存储异常值的单个STORE_FAST(如果匹配)。同样,有几个异常匹配:

>>> def f():
...     try:
...         raise ValueError
...     except KeyError:
...         pass
...     except IOError:
...         pass
...     except SomeOtherError:
...         pass
...     except:
...         pass
... 
>>> dis.dis(f)
  2           0 SETUP_EXCEPT            10 (to 13)

  3           3 LOAD_GLOBAL              0 (ValueError)
              6 RAISE_VARARGS            1
              9 POP_BLOCK           
             10 JUMP_FORWARD            55 (to 68)

  4     >>   13 DUP_TOP             
             14 LOAD_GLOBAL              1 (KeyError)
             17 COMPARE_OP              10 (exception match)
             20 POP_JUMP_IF_FALSE       29
             23 POP_TOP             
             24 POP_TOP             
             25 POP_TOP             

  5          26 JUMP_FORWARD            39 (to 68)

  6     >>   29 DUP_TOP             
             30 LOAD_GLOBAL              2 (IOError)
             33 COMPARE_OP              10 (exception match)
             36 POP_JUMP_IF_FALSE       45
             39 POP_TOP             
             40 POP_TOP             
             41 POP_TOP             

  7          42 JUMP_FORWARD            23 (to 68)

  8     >>   45 DUP_TOP             
             46 LOAD_GLOBAL              3 (SomeOtherError)
             49 COMPARE_OP              10 (exception match)
             52 POP_JUMP_IF_FALSE       61
             55 POP_TOP             
             56 POP_TOP             
             57 POP_TOP             

  9          58 JUMP_FORWARD             7 (to 68)

 10     >>   61 POP_TOP             
             62 POP_TOP             
             63 POP_TOP             

 11          64 JUMP_FORWARD             1 (to 68)
             67 END_FINALLY         
        >>   68 LOAD_CONST               0 (None)
             71 RETURN_VALUE      

将复制该异常,并尝试将其与列出的每个异常相匹配,直到找到匹配为止,这可能是(可能)正在暗示的“捕获性能差”'。

答案 1 :(得分:6)

我认为两者在速度方面是相同的:

>>> timeit.timeit('try:\n    raise KeyError\nexcept KeyError:\n    pass', number=1000000 )
0.7168641227143269
>>> timeit.timeit('try:\n    raise KeyError\nexcept KeyError as e:\n    pass', number=1000000 )
0.7733279216613766

答案 2 :(得分:3)

Python程序是从代码块构造的。块是一段Python程序文本,作为一个单元执行。在Python中,核心块表示为struct basicblock:

<强> CPython的/ Python的/ compile.c

typedef struct basicblock_ {
    /* Each basicblock in a compilation unit is linked via b_list in the
       reverse order that the block are allocated.  b_list points to the next
       block, not to be confused with b_next, which is next by control flow. */
    struct basicblock_ *b_list;
    /* number of instructions used */
    int b_iused;
    /* length of instruction array (b_instr) */
    int b_ialloc;
    /* pointer to an array of instructions, initially NULL */
    struct instr *b_instr;
    /* If b_next is non-NULL, it is a pointer to the next
       block reached by normal control flow. */
    struct basicblock_ *b_next;
    /* b_seen is used to perform a DFS of basicblocks. */
    unsigned b_seen : 1;
    /* b_return is true if a RETURN_VALUE opcode is inserted. */
    unsigned b_return : 1;
    /* depth of stack upon entry of block, computed by stackdepth() */
    int b_startdepth;
    /* instruction offset for block, computed by assemble_jump_offsets() */
    int b_offset;
} basicblock;

循环,try / except和try / finally语句处理不同的东西。对于这3个语句使用框架块:

<强> CPython的/ Python的/ compile.c

enum fblocktype { LOOP, EXCEPT, FINALLY_TRY, FINALLY_END };

struct fblockinfo {
    enum fblocktype fb_type;
    basicblock *fb_block;
};

代码块在执行帧中执行。

<强> 的CPython /包含/ frameobject.h

typedef struct _frame {
    PyObject_VAR_HEAD
    struct _frame *f_back;      /* previous frame, or NULL */
    PyCodeObject *f_code;       /* code segment */
    PyObject *f_builtins;       /* builtin symbol table (PyDictObject) */
    PyObject *f_globals;        /* global symbol table (PyDictObject) */
    PyObject *f_locals;         /* local symbol table (any mapping) */
    PyObject **f_valuestack;    /* points after the last local */
    /* Next free slot in f_valuestack.  Frame creation sets to f_valuestack.
       Frame evaluation usually NULLs it, but a frame that yields sets it
       to the current stack top. */
    PyObject **f_stacktop;
    PyObject *f_trace;          /* Trace function */

    /* In a generator, we need to be able to swap between the exception
       state inside the generator and the exception state of the calling
       frame (which shouldn't be impacted when the generator "yields"
       from an except handler).
       These three fields exist exactly for that, and are unused for
       non-generator frames. See the save_exc_state and swap_exc_state
       functions in ceval.c for details of their use. */
    PyObject *f_exc_type, *f_exc_value, *f_exc_traceback;
    /* Borrowed reference to a generator, or NULL */
    PyObject *f_gen;

    int f_lasti;                /* Last instruction if called */
    /* Call PyFrame_GetLineNumber() instead of reading this field
       directly.  As of 2.3 f_lineno is only valid when tracing is
       active (i.e. when f_trace is set).  At other times we use
       PyCode_Addr2Line to calculate the line from the current
       bytecode index. */
    int f_lineno;               /* Current line number */
    int f_iblock;               /* index in f_blockstack */
    char f_executing;           /* whether the frame is still executing */
    PyTryBlock f_blockstack[CO_MAXBLOCKS]; /* for try and loop blocks */
    PyObject *f_localsplus[1];  /* locals+stack, dynamically sized */
} PyFrameObject;

一个框架包含一些管理信息(用于调试),并确定在代码块执行完成后继续执行的位置和方式。当你使用&#39;作为&#39;声明(在&#39;中输入&#39;或&#39;除了Exception as&#39;语句)您只需进行名称绑定操作。即Python只是在框架对象的* f_locals符号表中添加对象的引用。因此,运行时不会产生任何开销。

但是你在分析时会有一些开销。

<强> 的CPython /模块/ parsermodule.c

static int
validate_except_clause(node *tree)
{
    int nch = NCH(tree);
    int res = (validate_ntype(tree, except_clause)
               && ((nch == 1) || (nch == 2) || (nch == 4))
               && validate_name(CHILD(tree, 0), "except"));

    if (res && (nch > 1))
        res = validate_test(CHILD(tree, 1));
    if (res && (nch == 4))
        res = (validate_name(CHILD(tree, 2), "as")
               && validate_ntype(CHILD(tree, 3), NAME));

    return (res);
}

但是,在我看来,这可以忽略

答案 3 :(得分:3)

捕获并不昂贵,看起来相对较慢的部分是堆栈跟踪本身的创建,如果需要,随后展开堆栈。

我所知道的所有基于堆栈的语言都允许您捕获堆栈跟踪,这需要执行这些操作。

  1. 调用raise时收集堆栈信息。注意,Java 1.7允许您抑制堆栈收集,它会快得多,但是会丢失很多有用的信息。语言没有明智的方法可以知道谁会抓住它,所以忽略异常无济于事,因为无论如何它必须完成大部分工作。
  2. 如果我们提出异常,那么展开堆栈,即取消分配所有内存并展开,直到我们达到有效的捕获。
  3. 与上述两项行动相比,这个问题微不足道。下面是一些代码来演示随着堆栈深度的增加,性能下降。

    #!/usr/bin/env python
    import os
    import re
    import time
    import pytest
    
    max_depth = 10
    time_start = [0] * (max_depth + 1)
    time_stop  = [0] * (max_depth + 1)
    time_total = [0] * (max_depth + 1)
    depth = []
    for x in range(0, max_depth):
      depth.append(x)
    
    @pytest.mark.parametrize('i', depth)
    def test_stack(benchmark, i):
      benchmark.pedantic(catcher2, args=(i,i), rounds=10, iterations=1000)
    
    #@pytest.mark.parametrize('d', depth)
    #def test_recursion(benchmark, d):
    #  benchmark.pedantic(catcher, args=(d,), rounds=50, iterations=50) 
    
    def catcher(i, depth):
      try:
        ping(i, depth)
      except Exception:
        time_total[depth] += time.clock() - time_start[depth]
    
    def recurse(i, depth):
      if(d > 0):
        recurse(--i, depth)
      thrower(depth)
    
    def catcher2(i, depth):
      global time_total
      global time_start
      try:
        ping(i, depth)
      except Exception:
        time_total[depth] += time.clock() - time_start[depth]
    
    def thrower(depth):
      global time_start
      time_start[depth] = time.clock()
      raise Exception('wtf')
    
    def ping(i, depth):
      if(i < 1): thrower(i, depth)
      return pong(i, depth)
    
    def pong(i, depth):
      if(i < 0): thrower(i,depth)
      return ping(i - 4, depth)
    
    if __name__ == "__main__":
      rounds     = 200000
      class_time  = 0
      class_start = time.clock()
      for round in range(0, rounds):
        ex = Exception()
      class_time = time.clock() - class_start
      print("%d ex = Exception()'s %f" % (rounds, class_time))
    
      for depth in range(0, max_depth):
        #print("Depth %d" % depth)
        for round in range(0, rounds):
          catcher(depth, depth)
    
      for rep in range(0, max_depth):
        print("depth=%d time=%f" % (rep, time_total[rep]/1000000))
    

    输出是,调用Exception()

    的时间(相对时间)
    200000 ex = Exception()'s 0.040469
    
    depth=0 time=0.103843
    depth=1 time=0.246050
    depth=2 time=0.401459
    depth=3 time=0.565742
    depth=4 time=0.736362
    depth=5 time=0.921993
    depth=6 time=1.102257
    depth=7 time=1.278089
    depth=8 time=1.463500
    depth=9 time=1.657082
    

    在Python上比我更聪明的人可能会让py.test在最后打印时间。

    注意,几周前有一个与Java有关的问题非常相似。无论使用何种语言,它都是一个非常有用的线索......

    Which part of throwing an Exception is expensive?