有几个AC_SEARCH_LIBS([autoconfhook],[bingo],,[AC_MSG_WARN(bingo not found)]) #.
个软件包可以更轻松地处理美国人口普查数据。我经常使用的两个是tigris
(用于加载空间数据)和acs
(用于加载表格数据)。
然而,我一直遇到的一个问题是,我无法找到一种有效,可靠的方法来确定一个地方内的所有小册子(或街区小组,邮政编码等)而不离开{ {1}}控制台。
例如,如果我想在西雅图使用人口普查区块数据,我将首先使用R
下载华盛顿州金县的空间数据:
R
但不幸的是,没有明显的方法可以将这些数据分组,只包括西雅图的大片。
tigris::tracts
同样,library(tigris)
tr <- tigris::tracts(state = "WA", county = "King")
套餐允许用户使用glimpse(tr)
Observations: 398
Variables: 12
$ STATEFP (chr) "53", "53", "53", "53", "53", "53", "53", ...
$ COUNTYFP (chr) "033", "033", "033", "033", "033", "033", ...
$ TRACTCE (chr) "003800", "021500", "032704", "026200", "0...
$ GEOID (chr) "53033003800", "53033021500", "53033032704...
$ NAME (chr) "38", "215", "327.04", "262", "327.03", "3...
$ NAMELSAD (chr) "Census Tract 38", "Census Tract 215", "Ce...
$ MTFCC (chr) "G5020", "G5020", "G5020", "G5020", "G5020...
$ FUNCSTAT (chr) "S", "S", "S", "S", "S", "S", "S", "S", "S...
$ ALAND (dbl) 624606, 3485578, 17160645, 15242622, 10319...
$ AWATER (dbl) 0, 412526, 447367, 526886, 175464, 0, 4360...
$ INTPTLAT (chr) "+47.6794093", "+47.7643848", "+47.4940877...
$ INTPTLON (chr) "-122.2955292", "-122.2737863", "-121.7717...
功能创建人口普查数据的子集,但在我的示例中,如果我不具备此功能,这将无法帮助我所有西雅图地区的地理信息系统GEOID列表。
为了记录,我知道可以在其他地方确定此信息。 Census.gov常见问题解答中的page提供了有关如何确定给定人口普查区域中所有区域的明确说明。但鉴于这是许多与人口普查相关的分析中的关键步骤,最好是从acs
控制台中有一种方便的方法。
提前致谢。
虽然这个问题涉及空间数据,我最感兴趣的是找到非空间解决方案。例如,我更倾向于使用查询Census API并返回向量的解决方案期望的GEOID到采用空间分析工具(例如,geo.make
)来创建向量的解决方案。为什么?因为空间方法在这个过程中更容易出错,这是我们所讨论的已知的信息,而不是需要在空间上推断出来的信息。
答案 0 :(得分:2)
我经常需要相同类型的数据,所以我写了一个R包来完成这项工作。此包称为totalcensus
。你可以在https://github.com/GL-Li/totalcensus找到它。
使用此软件包,您可以非常轻松地获取城镇,城市,县,都市区和所有其他地理区域的区域,区块组或区块级数据。例如,如果您想在2011-2015 ACS 5年调查中获得各个区域的区块组级别的比赛数据,只需运行如下代码:
mixed <- read_acs5year(
year = 2015,
states = c("ut", "ri"),
table_contents = c(
"white = B02001_002",
"black = B02001_003",
"asian = B02001_005"
),
areas = c(
"Lincoln town, RI",
"Salt Lake City city, UT",
"Salt Lake City metro",
"Kent county, RI",
"COUNTY = UT001",
"PLACE = UT62360"
),
summary_level = "block group"
)
返回如下数据:
# area GEOID lon lat state population white black asian GEOCOMP SUMLEV NAME
# 1: Lincoln town, RI 15000US440070115001 -71.46686 41.94419 RI 1561 1386 128 47 all 150 Block Group 1, Census Tract 115, Providence County, Rhode Island
# 2: Lincoln town, RI 15000US440070115002 -71.47159 41.96754 RI 916 806 97 0 all 150 Block Group 2, Census Tract 115, Providence County, Rhode Island
# 3: Lincoln town, RI 15000US440070115003 -71.47820 41.96364 RI 2622 2373 77 86 all 150 Block Group 3, Census Tract 115, Providence County, Rhode Island
# 4: Lincoln town, RI 15000US440070115004 -71.47830 41.97346 RI 1605 1516 43 0 all 150 Block Group 4, Census Tract 115, Providence County, Rhode Island
# 5: Lincoln town, RI 15000US440070116001 -71.44665 41.93120 RI 948 764 0 0 all 150 Block Group 1, Census Tract 116, Providence County, Rhode Island
# ---
# 1129: Providence city, UT 15000US490050012011 -111.82424 41.69198 UT 2018 1877 0 0 all 150 Block Group 1, Census Tract 12.01, Cache County, Utah
# 1130: Providence city, UT 15000US490050012012 -111.80736 41.69323 UT 1486 1471 0 0 all 150 Block Group 2, Census Tract 12.01, Cache County, Utah
# 1131: Providence city, UT 15000US490050012013 -111.81310 41.65837 UT 1563 1440 15 0 all 150 Block Group 3, Census Tract 12.01, Cache County, Utah
# 1132: Providence city, UT 15000US490050012022 -111.85231 41.68674 UT 3894 3594 0 0 all 150 Block Group 2, Census Tract 12.02, Cache County, Utah
# 1133: Providence city, UT 15000US490059801001 -111.64525 41.67498 UT 118 118 0 0 all 150 Block Group 1, Census Tract 9801, Cache County, Utah
答案 1 :(得分:1)
使用ggmaps
包,我们可以使用反向地理编码来使用数据中的纬度/经度点获取信息。这将创建一个包含所有数据点的城市名称的向量。
city <- vector(mode = "character", length=nrow(tr@data))
for (i in 1:nrow(tr@data))
city[i] <- strsplit(revgeocode(c(as.numeric(tr@data[i,12]),
as.numeric(tr@data[i,11]))), ", ")[[1]][2]
head(city)
[1] "Seattle" "Lake Forest Park" "North Bend" "Tukwila"
"Snoqualmie" "Woodinville"