我们有一个面向微服务的后端堆栈。所有微服务都构建在Nancy
之上,并使用topshelf
注册为Windows服务。
处理大多数流量(~5000 req / s)的服务之一,在8台服务器中的3台上开始出现线程池饥饿问题。
这是我们在点击特定端点时遇到的例外情况:
System.InvalidOperationException: There were not enough free threads in the ThreadPool to complete the operation.
at System.Net.HttpWebRequest.BeginGetResponse(AsyncCallback callback, Object state)
at System.Net.Http.HttpClientHandler.StartGettingResponse(RequestState state)
at System.Net.Http.HttpClientHandler.StartRequest(Object obj)
--- End of stack trace from previous location where exception was thrown ---
at System.Runtime.CompilerServices.TaskAwaiter.ThrowForNonSuccess(Task task)
at System.Runtime.CompilerServices.TaskAwaiter.HandleNonSuccessAndDebuggerNotification(Task task)
at RandomNamedClient.<GetProductBySkuAsync>d__20.MoveNext()
--- End of stack trace from previous location where exception was thrown ---
at System.Runtime.CompilerServices.TaskAwaiter.ThrowForNonSuccess(Task task)
at System.Runtime.CompilerServices.TaskAwaiter.HandleNonSuccessAndDebuggerNotification(Task task)
at ProductService.<GetBySkuAsync>d__3.MoveNext() in ...\ProductService.cs:line 34
--- End of stack trace from previous location where exception was thrown ---
at System.Runtime.CompilerServices.TaskAwaiter.ThrowForNonSuccess(Task task)
at System.Runtime.CompilerServices.TaskAwaiter.HandleNonSuccessAndDebuggerNotification(Task task)
at ProductModule.<>c__DisplayClass15.<<.ctor>b__b>d__1d.MoveNext() in ...\ProductModule.cs:line 32
此端点调用另一个服务 - 它不在我的团队的域中 - 以获取产品数据。其实施如下:
Get["/product/sku/{sku}", true] = async (parameters, ctx) =>
{
string sku = parameters.sku;
var product = await productService.GetBySkuAsync(sku);
return Response.AsJson(new ProductRepresentation(product));
};
ProductService.GetBySkuAsync(string sku)
实施:
public async Task<Product> GetBySkuAsync(string sku)
{
var productDto = await randomNamedClient.GetProductBySkuAsync(sku);
if (productDto == null)
{
throw new ProductDtoNotFoundException("sku", sku);
}
var variantDto = productDto.VariantList.FirstOrDefault(v => v.Sku == sku);
if (variantDto == null)
{
throw new ProductVariantDtoNotFoundException("sku", sku);
}
return MapVariantDtoToProduct(variantDto, productDto);
}
RandomNamedClient.GetProductBySkuAsync(string sku)
实现(来自内部包):
public async Task<ProductDto> GetProductBySkuAsync(string sku)
{
HttpResponseMessage result = await this._serviceClient.GetAsync("Product?Sku=" + sku);
return result == null || result.StatusCode != HttpStatusCode.OK ? (ProductDto) null : this.Decompress<ProductDto>(result);
}
RandomNamedClient.Decompress<T>(HttpResponseMessage response)
实施:
private T Decompress<T>(HttpResponseMessage response)
{
if (!response.Content.Headers.ContentEncoding.Contains("gzip"))
return HttpContentExtensions.ReadAsAsync<T>(response.Content).Result;
using (GZipStream gzipStream = new GZipStream((Stream) new MemoryStream(response.Content.ReadAsByteArrayAsync().Result), CompressionMode.Decompress))
{
byte[] buffer = new byte[8192];
using (MemoryStream memoryStream = new MemoryStream())
{
int count;
do
{
count = gzipStream.Read(buffer, 0, 8192);
if (count > 0)
memoryStream.Write(buffer, 0, count);
}
while (count > 0);
return JsonConvert.DeserializeObject<T>(Encoding.UTF8.GetString(memoryStream.ToArray()));
}
}
}
我们所有的服务都是作为Release / 32位构建的。我们没有调整有关线程池使用的任何内容。
答案 0 :(得分:8)
我在这段代码中看到的最大问题是使用Decompress<T>
阻止异步操作的Task.Result
方法。这可能会阻止当前处理请求的线程对线程池的检索,或者更糟糕的是导致代码中的死锁(这正是您shouldn't block on async code的原因)。我不确定你是否已经看到这些请求被彻底处理,但是如果NancyFX正在为你处理同步上下文的编组(看起来像it does),那很可能是线程池饥饿的根本原因
您可以通过使所有IO处理在该方法async
内工作来改变这一点,并利用这些类已经公开的自然异步API。或者,我绝对不建议这样做,你可以在任何地方使用ConfigureAwait(false)
。
(旁注 - 您可以使用Stream.CopyToAsync()
简化代码)
正确的异步实现如下所示:
private async Task<T> DecompressAsync<T>(HttpResponseMessage response)
{
if (!response.Content.Headers.ContentEncoding.Contains("gzip"))
return await response.Content.ReadAsAsync<T>();
const int bufferSize = 8192;
using (GZipStream gzipStream = new GZipStream(
new MemoryStream(
await response.Content.ReadAsByteArrayAsync()),
CompressionMode.Decompress))
using (MemoryStream memoryStream = new MemoryStream())
{
await gzipStream.CopyToAsync(memoryStream, bufferSize);
return JsonConvert.DeserializeObject<T>(
Encoding.UTF8.GetString(memoryStream.ToArray()));
}
}