如何使用
进行归纳以建立语句moll n = doll n
moll 0 = 1 --(m.1)
moll n = moll ( n-1) + n --(m.2)
doll n = sol 0 n --(d.1)
where
sol acc 0 = acc +1 --(d.2)
sol acc n = sol ( acc + n) (n-1) -- ? (d.2)
我试图证明n = 0的基本情况
doll 0 = (d.2) = 1 = (m.1) = moll 0 , which is correct.
现在为n+1
,显示
moll 2n = doll (n + 1)
=> doll (n + 1) = (d.2) = soll (acc + n + 1) n
但现在呢?我怎样才能进一步简化它?
答案 0 :(得分:1)
您的n+1
步骤中出现了错误。我怀疑这是因为你是Haskell及其优先规则的新手。
moll (n+1)
不是,当你写moll 2n
时 - 我假设你的意思是moll (2*n)
,因为moll 2n
是一个haskell语法错误。< / p>
无论如何,moll (n+1)
实际上是moll n + n + 1
,或者添加了额外的括号只是为了明确:
(moll n) + (n + 1)
也就是说,您将moll
应用于n
,然后将n + 1
添加到该结果中。
从这里你应该能够应用归纳假设并继续前进。
更明确地说,因为你似乎仍然遇到麻烦:
moll (n+1) == (moll n) + (n + 1) (by m.2)
== (doll n) + (n + 1) (by induction hypot.)
== (sol 0 n) + (n + 1) (by d.1)
现在,作为一个引理:
sol x n == (sol 0 n) + x
这可以通过n
的归纳来证明。 n
等于0显然是正确的。
对于引理的诱导步骤:
sol x (n+1) == (sol (x + (n+1)) n) (By d.2, for (n+1) > 0)
== (sol 0 n) + (x + (n+1)) (By the induction hypot.)
== (sol 0 n) + (n+1) + x (This is just math; re-arranging)
== ((sol 0 n) + (n+1)) + x
== (sol (n+1) n) + x (By the induction hypot. again)
== (sol 0 (n+1)) + x (By d.2 again)
我第二次使用归纳假设似乎有点奇怪,但请记住归纳假设说:
sol x n == (sol 0 n) + x
适用于所有x
。因此,我可以将其应用于添加到(sol 0 n)
的任何内容,包括n+1
。
现在,回到主要证据,使用我们的引理:
moll (n+1) == (sol 0 n) + (n + 1) (we had this before)
== sol (n+1) n (by our lemma)
== sol 0 (n+1) (by d.2)
== doll (n+1) (by d.1)