置换矩阵

时间:2015-12-23 14:43:37

标签: python-2.7 numpy matrix permutation adjacency-matrix

假设我有以下矩阵/数组:

array([[0, 0, 1, 1, 1],
       [0, 0, 1, 0, 1],
       [1, 1, 0, 1, 1],
       [1, 0, 1, 0, 0],
       [1, 1, 1, 0, 0]])

我希望应用以下排列:

1 -> 5
2 -> 4

结果应该在最后:

array([[1, 1, 1, 0, 0],
       [1, 0, 1, 0, 0],
       [1, 1, 0, 1, 1],
       [0, 0, 1, 0, 1],
       [0, 0, 1, 1, 1]])

现在,一种令人难以置信的天真(并且内存代价高昂)的方式可能是:

a2 = deepcopy(a1)
a2[0,:] = a1[4,:]
a2[4,:] = a1[0,:]
a = deepcopy(a2)
a2[:,0] = a[:,4]
a2[:,4] = a[:,0]

a3 = deepcopy(a2)
a2[1,:] = a3[3,:]
a2[3,:] = a3[1,:]
a = deepcopy(a2)
a2[:,1] = a[:,3]
a2[:,3] = a[:,1]

但是,我想知道是否有更高效的方法可以做到这一点。 numpy.shuffle和numpy.permutation似乎只置换矩阵的行(而不是同时列的列)。这对我来说不起作用,因为矩阵是邻接矩阵(代表图形),我需要进行排列,这将给出一个与原始图形同构的图形。此外,我需要做任意数量的排列(不止一个)。

谢谢!

2 个答案:

答案 0 :(得分:3)

您可以使用integer array indexing

在单行中执行交换
a = np.array([[0, 0, 1, 1, 1],
              [0, 0, 1, 0, 1],
              [1, 1, 0, 1, 1],
              [1, 0, 1, 0, 0],
              [1, 1, 1, 0, 0]])
b = a.copy()

# map 0 -> 4 and 1 -> 3 (N.B. Python indexing starts at 0 rather than 1)
a[[4, 3, 0, 1]] = a[[0, 1, 4, 3]]

print(repr(a))
# array([[1, 1, 1, 0, 0],
#        [1, 0, 1, 0, 0],
#        [1, 1, 0, 1, 1],
#        [0, 0, 1, 0, 1],
#        [0, 0, 1, 1, 1]])

请注意,数组索引始终返回副本而不是视图 - 如果不生成副本,则无法交换数组的任意行/列。

在这个特定的情况下,您可以使用切片索引来避免复制,切片索引会返回视图而不是副本:

b = b[::-1] # invert the row order

print(repr(b))
# array([[1, 1, 1, 0, 0],
#        [1, 0, 1, 0, 0],
#        [1, 1, 0, 1, 1],
#        [0, 0, 1, 0, 1],
#        [0, 0, 1, 1, 1]])

更新

您可以使用相同的索引方法来交换列。

c = np.arange(25).reshape(5, 5)
print(repr(c))
# array([[ 0,  1,  2,  3,  4],
#        [ 5,  6,  7,  8,  9],
#        [10, 11, 12, 13, 14],
#        [15, 16, 17, 18, 19],
#        [20, 21, 22, 23, 24]])

c[[0, 4], :] = c[[4, 0], :]     # swap row 0 with row 4...
c[:, [0, 4]] = c[:, [4, 0]]     # ...and column 0 with column 4

print(repr(c))

# array([[24, 21, 22, 23, 20],
#        [ 9,  6,  7,  8,  5],
#        [14, 11, 12, 13, 10],
#        [19, 16, 17, 18, 15],
#        [ 4,  1,  2,  3,  0]])

在这种情况下,我使用了不同的示例数组 - 在执行行/列交换后,您的版本将产生相同的输出,这使得很难理解正在发生的事情。

答案 1 :(得分:0)

我找到了一个可以做我想要的解决方案(虽然价格昂贵):

a2 = deepcopy(a1)
first = randint(0, 5, 10)
second = randint(0, 5, 10)
for i in range(len(first)):
    a = deepcopy(a2)
    a2[first[i],:] = a[second[i],:]
    a2[second[i],:] = a[first[i],:]
for i in range(len(first)):
    a = deepcopy(a2)
    a2[:,first[i]] = a[:,second[i]]
    a2[:,second[i]] = a[:,first[i]] 

基本上,我正在做10个随机开关。但是,我需要多次复制矩阵。无论如何,a2现在代表一个与a1同构的图。