我正在尝试将以下函数y(x)= a *(1 +(x ^ 2)/(b ^ 2))^ t拟合到一组特定数据,其中,a,b和t是想要通过拟合确定的常数。
我尝试以下操作,例如
len <- 24
x = runif(len)
y = x^3 + runif(len, min = -0.1, max = 0.1)
plot(x, y)
s <- seq(from = 0, to = 1, length = 50)
lines(s, s^3, lty = 2)
df <- data.frame(x, y)
m <- nls(y~a*( 1 + (x^2)/(b^2) )^t, data = df, start = list(a=1,t=0, b=1), trace = T)
> Error in nlsModel(formula, mf, start, wts) :
singular gradient matrix at initial parameter estimates
有人可以帮助我将这个功能设置到这些点,即使拟合变坏,重要的是要适应这个功能,即她运行数据
谢谢大家
答案 0 :(得分:0)
由于您的数据随机变化,因此在某些情况下, a 的值接近于零,您的函数变为零。曲线拟合程序在那时失败。随机化启动参数可能适用于某些情况。
使用LM算法可以计算稍微更稳定的输出:
require("minpack.lm")
LMCurveFit <- function(df) {
# The function to be fit
FitFunction <- function(params, x) {
with (
as.list(params), {
a*(1 + x^2/b^2)^t
}
)
}
# Residual
Residual <- function(params, x, y) {
FitFunction(params, x) - y
}
# Sum of squares of residuals
ssqfun <- function(params, x, y) {
sum(Residual(params, x, y)^2)
}
# Normalize the data
x_max = max(x)
y_max = max(y)
df$x = df$x/x_max
df$y = df$y/y_max
# Define start parameters
a_start = 0.1
b_start = 1.0
t_start = 1.0
param_start = c(a = a_start,
b = b_start,
t = t_start)
# Do LM fit
nls.out <- nls.lm(par = param_start,
fn = Residual,
control = nls.lm.control(nprint=0,
ftol=.Machine$double.eps,
ptol=.Machine$double.eps,
maxfev=10000, maxiter=1024),
x = df$x,
y = df$y)
# Revert scaling
nls.out$par[1] = nls.out$par[1]*y_max
nls.out$par[2] = nls.out$par[2]*x_max
# Get the parameters
params_fit = coef(nls.out)
print(params_fit)
# Compute predicted values
predicted = FitFunction(as.list(params_fit), df$x*x_max)
}
# LM fit
pred_y = LMCurveFit(df)
lines(x, pred_y)