如何获得股市分析图?

时间:2015-08-15 19:48:46

标签: python-2.7 matplotlib graph attributeerror candlestick-chart

我更新了代码,它现在提供了图表,但是在给我图表后,它会产生以下错误消息。

  

警告(来自警告模块):     文件“C:\ Python27 \ lib \ site-packages \ matplotlib \ collections.py”,第590行       如果self._edgecolors == str('face'):   FutureWarning:元素比较失败;返回标量,但将来会执行元素比较

import urllib2
import time
import datetime
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.ticker as mticker
import matplotlib.dates as mdates
from matplotlib.finance import candlestick_ochl 
import matplotlib
import pylab
matplotlib.rcParams.update({'font.size': 9})



def rsiFunc(prices, n=14):
    deltas = np.diff(prices)
    seed = deltas[:n+1]
    up = seed[seed>=0].sum()/n
    down = -seed[seed<0].sum()/n
    rs = up/down
    rsi = np.zeros_like(prices)
    rsi[:n] = 100. - 100./(1.+rs)

    for i in range(n, len(prices)):
        delta = deltas[i-1] # cause the diff is 1 shorter

        if delta>0:
            upval = delta
            downval = 0.
        else:
            upval = 0.
            downval = -delta

        up = (up*(n-1) + upval)/n
        down = (down*(n-1) + downval)/n

        rs = up/down
        rsi[i] = 100. - 100./(1.+rs)

    return rsi

def movingaverage(values,window):
    weigths = np.repeat(1.0, window)/window
    smas = np.convolve(values, weigths, 'valid')
    return smas # as a numpy array

def ExpMovingAverage(values, window):
    weights = np.exp(np.linspace(-1., 0., window))
    weights /= weights.sum()
    a =  np.convolve(values, weights, mode='full')[:len(values)]
    a[:window] = a[window]
    return a


def computeMACD(x, slow=26, fast=12):
    """
    compute the MACD (Moving Average Convergence/Divergence) using a fast and slow exponential moving avg'
    return value is emaslow, emafast, macd which are len(x) arrays
    """
    emaslow = ExpMovingAverage(x, slow)
    emafast = ExpMovingAverage(x, fast)
    return emaslow, emafast, emafast - emaslow


def graphData(stock,MA1,MA2):
    '''
        Use this to dynamically pull a stock:
    '''
    try:
        print 'Currently Pulling',stock
        print str(datetime.datetime.fromtimestamp(int(time.time())).strftime('%Y-%m-%d %H:%M:%S'))
        #Keep in mind this is close high low open data from Yahoo
        urlToVisit = 'http://chartapi.finance.yahoo.com/instrument/1.0/'+stock+'/chartdata;type=quote;range=10y/csv'
        stockFile =[]
        try:
            sourceCode = urllib2.urlopen(urlToVisit).read()
            splitSource = sourceCode.split('\n')
            for eachLine in splitSource:
                splitLine = eachLine.split(',')
                if len(splitLine)==6:
                    if 'values' not in eachLine:
                        stockFile.append(eachLine)
        except Exception, e:
            print str(e), 'failed to organize pulled data.'
    except Exception,e:
        print str(e), 'failed to pull pricing data'
    try:   
        date, closep, highp, lowp, openp, volume = np.loadtxt(stockFile,delimiter=',', unpack=True,
                                                              converters={ 0: mdates.strpdate2num('%Y%m%d')})
        x = 0
        y = len(date)
        newAr = []
        while x < y:
            appendLine = date[x],openp[x],closep[x],highp[x],lowp[x],volume[x]
            newAr.append(appendLine)
            x+=1

        Av1 = movingaverage(closep, MA1)
        Av2 = movingaverage(closep, MA2)

        SP = len(date[MA2-1:])

        fig = plt.figure(facecolor='#07000d')

        ax1 = plt.subplot2grid((6,4), (1,0), rowspan=4, colspan=4, axisbg='#07000d')
        candlestick_ochl(ax1, newAr[-SP:], width=.6, colorup='#53c156', colordown='#ff1717')#width=.6, plot_day_summary_ohlc

        Label1 = str(MA1)+' SMA'
        Label2 = str(MA2)+' SMA'

        ax1.plot(date[-SP:],Av1[-SP:],'#e1edf9',label=Label1, linewidth=1.5)
        ax1.plot(date[-SP:],Av2[-SP:],'#4ee6fd',label=Label2, linewidth=1.5)

        ax1.grid(True, color='w')
        ax1.xaxis.set_major_locator(mticker.MaxNLocator(10))
        ax1.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d'))
        ax1.yaxis.label.set_color("w")
        ax1.spines['bottom'].set_color("#5998ff")
        ax1.spines['top'].set_color("#5998ff")
        ax1.spines['left'].set_color("#5998ff")
        ax1.spines['right'].set_color("#5998ff")
        ax1.tick_params(axis='y', colors='w')
        plt.gca().yaxis.set_major_locator(mticker.MaxNLocator(prune='upper')) #gca()
        ax1.tick_params(axis='x', colors='w')
        plt.ylabel('Stock price and Volume')

        maLeg = plt.legend(loc=9, ncol=2, prop={'size':7},
                   fancybox=True, borderaxespad=0.)
        maLeg.get_frame().set_alpha(0.4)
        textEd = plt.gca().get_legend().get_texts()#pylab.gca() changed to plt.gca()
        plt.setp(textEd[0:5], color = 'w')#changed pylab.setp to plt.setp

        volumeMin = 0

        ax0 = plt.subplot2grid((6,4), (0,0), sharex=ax1, rowspan=1, colspan=4, axisbg='#07000d')
        rsi = rsiFunc(closep)
        rsiCol = '#c1f9f7'
        posCol = '#386d13'
        negCol = '#8f2020'

        ax0.plot(date[-SP:], rsi[-SP:], rsiCol, linewidth=1.5)
        ax0.axhline(70, color=negCol)
        ax0.axhline(30, color=posCol)
        ax0.fill_between(date[-SP:], rsi[-SP:], 70, where=(rsi[-SP:]>=70), facecolor=negCol, edgecolor=negCol, alpha=0.5)
        ax0.fill_between(date[-SP:], rsi[-SP:], 30, where=(rsi[-SP:]<=30), facecolor=posCol, edgecolor=posCol, alpha=0.5)
        ax0.set_yticks([30,70])
        ax0.yaxis.label.set_color("w")
        ax0.spines['bottom'].set_color("#5998ff")
        ax0.spines['top'].set_color("#5998ff")
        ax0.spines['left'].set_color("#5998ff")
        ax0.spines['right'].set_color("#5998ff")
        ax0.tick_params(axis='y', colors='w')
        ax0.tick_params(axis='x', colors='w')
        plt.ylabel('RSI')

        ax1v = ax1.twinx()
        ax1v.fill_between(date[-SP:],volumeMin, volume[-SP:], facecolor='#00ffe8', alpha=.4)
        ax1v.axes.yaxis.set_ticklabels([])
        ax1v.grid(False)
        ax1v.set_ylim(0, 3*volume.max())
        ax1v.spines['bottom'].set_color("#5998ff")
        ax1v.spines['top'].set_color("#5998ff")
        ax1v.spines['left'].set_color("#5998ff")
        ax1v.spines['right'].set_color("#5998ff")
        ax1v.tick_params(axis='x', colors='w')
        ax1v.tick_params(axis='y', colors='w')


        ax2 = plt.subplot2grid((6,4), (5,0), sharex=ax1, rowspan=1, colspan=4, axisbg='#07000d')



        # START NEW INDICATOR CODE #



        # END NEW INDICATOR CODE #




        plt.gca().yaxis.set_major_locator(mticker.MaxNLocator(prune='upper'))
        ax2.spines['bottom'].set_color("#5998ff")
        ax2.spines['top'].set_color("#5998ff")
        ax2.spines['left'].set_color("#5998ff")
        ax2.spines['right'].set_color("#5998ff")
        ax2.tick_params(axis='x', colors='w')
        ax2.tick_params(axis='y', colors='w')
        ax2.yaxis.set_major_locator(mticker.MaxNLocator(nbins=5, prune='upper'))





        for label in ax2.xaxis.get_ticklabels():
            label.set_rotation(45)

        plt.suptitle(stock.upper(),color='w')

        plt.setp(ax0.get_xticklabels(), visible=False)
        plt.setp(ax1.get_xticklabels(), visible=False)

        '''ax1.annotate('Big news!',(date[510],Av1[510]),
            xytext=(0.8, 0.9), textcoords='axes fraction',
            arrowprops=dict(facecolor='white', shrink=0.05),
            fontsize=14, color = 'w',
            horizontalalignment='right', verticalalignment='bottom')'''

        plt.subplots_adjust(left=.09, bottom=.14, right=.94, top=.95, wspace=.20, hspace=0)
        plt.show()
        fig.savefig('example.png',facecolor=fig.get_facecolor())

    except Exception,e:
        print 'main loop',str(e)

while True:
    stock = raw_input('Stock to plot: ')
    graphData(stock,10,50)

1 个答案:

答案 0 :(得分:3)

请查看主题Violin plot: warning with matplotlib 1.4.3 pyplot fill_between warning since upgrade of numpy to 1.10.10

似乎int[] a1 = new int[1]; a1[0] = 1; int[] a2 = new int[1]; a2[0] = 1; System.out.println(a1.equals(a2)); //prints "false" 中存在一个错误(自升级到matplotlib 1.4.3后才开始导致该错误)。据报道,这已在numpy 1.10中更正(应尽快发布)。希望这会有所帮助。