我的问题:
我有一个大型JSON文件的数据集。我读了它并将其存储在kfold
变量中。
接下来,我预先处理它 - 以便能够使用它。
完成后我开始分类:
True Positive(TP)
交叉验证方法来获得平均值
准确性和训练分类器。True Negative(TN)
,False Positive(FP)
,False Negative(FN)
和trainList #It is a list with all the data of my dataset in JSON form
labelList #It is a list with all the labels of my data
值。我将使用这些参数来获得敏感度和特异性。 最后,我会用它来放入HTML,以便显示每个标签的TP图表。
代码:
我目前的变量:
#I transform the data from JSON form to a numerical one
X=vec.fit_transform(trainList)
#I scale the matrix (don't know why but without it, it makes an error)
X=preprocessing.scale(X.toarray())
#I generate a KFold in order to make cross validation
kf = KFold(len(X), n_folds=10, indices=True, shuffle=True, random_state=1)
#I start the cross validation
for train_indices, test_indices in kf:
X_train=[X[ii] for ii in train_indices]
X_test=[X[ii] for ii in test_indices]
y_train=[listaLabels[ii] for ii in train_indices]
y_test=[listaLabels[ii] for ii in test_indices]
#I train the classifier
trained=qda.fit(X_train,y_train)
#I make the predictions
predicted=qda.predict(X_test)
#I obtain the accuracy of this fold
ac=accuracy_score(predicted,y_test)
#I obtain the confusion matrix
cm=confusion_matrix(y_test, predicted)
#I should calculate the TP,TN, FP and FN
#I don't know how to continue
方法的大部分内容:
'\n'
答案 0 :(得分:74)
对于多类案例,您可以从混淆矩阵中找到所需的一切。例如,如果您的混淆矩阵如下所示:
然后,每个班级你要找的是这样的:
使用pandas / numpy,您可以同时为所有类执行此操作:
FP = confusion_matrix.sum(axis=0) - np.diag(confusion_matrix)
FN = confusion_matrix.sum(axis=1) - np.diag(confusion_matrix)
TP = np.diag(confusion_matrix)
TN = confusion_matrix.values.sum() - (FP + FN + TP)
# Sensitivity, hit rate, recall, or true positive rate
TPR = TP/(TP+FN)
# Specificity or true negative rate
TNR = TN/(TN+FP)
# Precision or positive predictive value
PPV = TP/(TP+FP)
# Negative predictive value
NPV = TN/(TN+FN)
# Fall out or false positive rate
FPR = FP/(FP+TN)
# False negative rate
FNR = FN/(TP+FN)
# False discovery rate
FDR = FP/(TP+FP)
# Overall accuracy
ACC = (TP+TN)/(TP+FP+FN+TN)
答案 1 :(得分:20)
如果您有两个具有预测值和实际值的列表;就像你看到的那样,你可以把它们传递给一个能用这样的东西来计算TP,FP,TN,FN的函数:
def perf_measure(y_actual, y_hat):
TP = 0
FP = 0
TN = 0
FN = 0
for i in range(len(y_hat)):
if y_actual[i]==y_hat[i]==1:
TP += 1
if y_hat[i]==1 and y_actual[i]!=y_hat[i]:
FP += 1
if y_actual[i]==y_hat[i]==0:
TN += 1
if y_hat[i]==0 and y_actual[i]!=y_hat[i]:
FN += 1
return(TP, FP, TN, FN)
从这里开始,我认为您将能够计算出您感兴趣的比率,以及其他性能指标,如特异性和敏感性。
答案 2 :(得分:17)
根据scikit-learn文档,
根据定义,混淆矩阵C使得C [i,j]等于已知在组i中但预测在组j中的观测数。
因此在二元分类中,真阴性的计数为C [0,0],假阴性为C [1,0],真阳性为C [1,1],假阳性为C [0,1]
CM = confusion_matrix(y_true, y_pred)
TN = CM[0][0]
FN = CM[1][0]
TP = CM[1][1]
FP = CM[0][1]
答案 3 :(得分:17)
您可以从混淆矩阵中获取所有参数。 混淆矩阵的结构(2X2矩阵)如下
TP|FP
FN|TN
所以
TP = cm[0][0]
FP = cm[0][1]
FN = cm[1][0]
TN = cm[1][1]
的更多详情
答案 4 :(得分:5)
在scikit-learn'metrics'库中有一个confusion_matrix方法,可以为您提供所需的输出。
您可以使用所需的任何分类器。这里我以KNeighbors为例。
from sklearn import metrics, neighbors
clf = neighbors.KNeighborsClassifier()
X_test = ...
y_test = ...
expected = y_test
predicted = clf.predict(X_test)
conf_matrix = metrics.confusion_matrix(expected, predicted)
>>> print conf_matrix
>>> [[1403 87]
[ 56 3159]]
答案 5 :(得分:2)
您可以尝试sklearn.metrics.classification_report
,如下所示:
import sklearn
y_true = [1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0]
y_pred = [1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0]
print sklearn.metrics.classification_report(y_true, y_pred)
输出:
precision recall f1-score support
0 0.80 0.57 0.67 7
1 0.50 0.75 0.60 4
avg / total 0.69 0.64 0.64 11
答案 6 :(得分:2)
从混淆矩阵中得出真实正词等的一种底线是ravel:
from sklearn.metrics import confusion_matrix
y_true = [1, 1, 0, 0]
y_pred = [1, 0, 1, 0]
tn, fp, fn, tp = confusion_matrix(y_true, y_pred).ravel()
print(tn, fp, fn, tp) # 1 1 1 1
答案 7 :(得分:2)
我写了一个只使用numpy的版本。 我希望它可以帮助你。
import numpy as np
def perf_metrics_2X2(yobs, yhat):
"""
Returns the specificity, sensitivity, positive predictive value, and
negative predictive value
of a 2X2 table.
where:
0 = negative case
1 = positive case
Parameters
----------
yobs : array of positive and negative ``observed`` cases
yhat : array of positive and negative ``predicted`` cases
Returns
-------
sensitivity = TP / (TP+FN)
specificity = TN / (TN+FP)
pos_pred_val = TP/ (TP+FP)
neg_pred_val = TN/ (TN+FN)
Author: Julio Cardenas-Rodriguez
"""
TP = np.sum( yobs[yobs==1] == yhat[yobs==1] )
TN = np.sum( yobs[yobs==0] == yhat[yobs==0] )
FP = np.sum( yobs[yobs==1] == yhat[yobs==0] )
FN = np.sum( yobs[yobs==0] == yhat[yobs==1] )
sensitivity = TP / (TP+FN)
specificity = TN / (TN+FP)
pos_pred_val = TP/ (TP+FP)
neg_pred_val = TN/ (TN+FN)
return sensitivity, specificity, pos_pred_val, neg_pred_val
答案 8 :(得分:1)
如果分类器中有多个类,则可能需要在该部分使用pandas-ml。 pandas-ml的混淆矩阵提供了更详细的信息。 check that
答案 9 :(得分:1)
以防万一有人在 MULTI-CLASS 示例
中寻找相同的内容def perf_measure(y_actual, y_pred):
class_id = set(y_actual).union(set(y_pred))
TP = []
FP = []
TN = []
FN = []
for index ,_id in enumerate(class_id):
TP.append(0)
FP.append(0)
TN.append(0)
FN.append(0)
for i in range(len(y_pred)):
if y_actual[i] == y_pred[i] == _id:
TP[index] += 1
if y_pred[i] == _id and y_actual[i] != y_pred[i]:
FP[index] += 1
if y_actual[i] == y_pred[i] != _id:
TN[index] += 1
if y_pred[i] != _id and y_actual[i] != y_pred[i]:
FN[index] += 1
return class_id,TP, FP, TN, FN
答案 10 :(得分:1)
def getTPFPTNFN(y_true, y_pred):
TP, FP, TN, FN = 0, 0, 0, 0
for s_true, s_pred in zip (y_true, y_pred):
if s_true == 1:
if s_pred == 1:
TP += 1
else:
FN += 1
else:
if s_pred == 0:
TN += 1
else:
FP += 1
return TP, FP, TN, FN
答案 11 :(得分:0)
我认为这两个答案都不完全正确。例如,假设我们有以下数组;
y_actual = [1,1,0,0,0,1,0,1,0,0,0]
y_predic = [1,1,1,0,0,0,1,1,0,1,0]
如果我们手动计算FP,FN,TP和TN值,它们应如下所示:
FP:3 FN:1 TP:3 TN:4
但是,如果我们使用第一个答案,结果如下:
FP:1 FN:3 TP:3 TN:4
它们不正确,因为在第一个答案中,假阳性应该是实际为0,但预测是1,而不是相反。假阴性也是一样。
而且,如果我们使用第二个答案,结果计算如下:
FP:3 FN:1 TP:4 TN:3
真正的正面和真正的负数不正确,它们应该相反。
我的计算是否正确?如果我遗失了什么,请告诉我。
答案 12 :(得分:0)
我尝试了一些答案,发现它们不起作用。
这对我有用:
from sklearn.metrics import classification_report
print(classification_report(y_test, predicted))
答案 13 :(得分:0)
在scikit 0.22版中,您可以这样做
from sklearn.metrics import multilabel_confusion_matrix
y_true = ["cat", "ant", "cat", "cat", "ant", "bird"]
y_pred = ["ant", "ant", "cat", "cat", "ant", "cat"]
mcm = multilabel_confusion_matrix(y_true, y_pred,labels=["ant", "bird", "cat"])
tn = mcm[:, 0, 0]
tp = mcm[:, 1, 1]
fn = mcm[:, 1, 0]
fp = mcm[:, 0, 1]
答案 14 :(得分:0)
#False positive cases
train = pd.merge(X_train, y_train,left_index=True, right_index=True)
y_train_pred = pd.DataFrame(y_train_pred)
y_train_pred.rename(columns={0 :'Predicted'}, inplace=True )
train = train.reset_index(drop=True).merge(y_train_pred.reset_index(drop=True),
left_index=True,right_index=True)
train['FP'] = np.where((train['Banknote']=="Forged") & (train['Predicted']=="Genuine"),1,0)
train[train.FP != 0]
答案 15 :(得分:0)
#FalseNegatives
test = pd.merge(Variables_test, Banknote_test,left_index=True, right_index=True)
Banknote_test_pred = pd.DataFrame(banknote_test_pred)
Banknote_test_pred.rename(columns={0 :'Predicted'}, inplace=True )
test = test.reset_index(drop=True).merge(Banknote_test_pred.reset_index(drop=True), left_index=True, right_index=True)
test['FN'] = np.where((test['Banknote']=="Genuine") & (test['Predicted']=="Forged"),1,0)
test[test.FN != 0]
答案 16 :(得分:0)
到目前为止给出的答案都没有对我有用,因为我有时最终会得到一个只有一个条目的混淆矩阵。以下代码可以缓解此问题:
from sklearn.metrics import confusion_matrix
CM = confusion_matrix(y, y_hat)
try:
TN = CM[0][0]
except IndexError:
TN = 0
try:
FN = CM[1][0]
except IndexError:
FN = 0
try:
TP = CM[1][1]
except IndexError:
TP = 0
try:
FP = CM[0][1]
except IndexError:
FP = 0
请注意,“y”是真实值,“y_hat”是预测值。
答案 17 :(得分:-1)
这里修复了invoketheshell的错误代码(目前显示为已接受的答案):
def performance_measure(y_actual, y_hat):
TP = 0
FP = 0
TN = 0
FN = 0
for i in range(len(y_hat)):
if y_actual[i] == y_hat[i]==1:
TP += 1
if y_hat[i] == 1 and y_actual[i] == 0:
FP += 1
if y_hat[i] == y_actual[i] == 0:
TN +=1
if y_hat[i] == 0 and y_actual[i] == 1:
FN +=1
return(TP, FP, TN, FN)