如何计算骰子系数以测量蟒蛇图像分割的准确性

时间:2015-07-07 15:57:25

标签: python-2.7 scikit-learn gis image-segmentation

我有土地覆盖的图像,我使用K-means聚类对其进行分割。现在我想计算我的分割算法的准确性。我在某处读到,骰子系数是实质性的评估指标。但我不知道如何计算它。 我使用Python 2.7 还有其他有效的评估方法吗?请提供摘要或链接到源。谢谢!

编辑: 我使用以下代码测量原始图像和分割图像的骰子相似度,但似乎需要数小时才能计算出来:

for i in xrange(0,7672320):
  for j in xrange(0,3):
    dice = np.sum([seg==gt])*2.0/(np.sum(seg)+np.sum(gt)) #seg is the segmented image and gt is the original image. Both are of same size

3 个答案:

答案 0 :(得分:2)

请参阅wiki

处的骰子相似系数

此处的示例代码段供您参考。请注意,由于您使用的是k-means,因此需要将k替换为所需的群集。

import numpy as np

k=1

# segmentation
seg = np.zeros((100,100), dtype='int')
seg[30:70, 30:70] = k

# ground truth
gt = np.zeros((100,100), dtype='int')
gt[30:70, 40:80] = k

dice = np.sum(seg[gt==k])*2.0 / (np.sum(seg) + np.sum(gt))

print 'Dice similarity score is {}'.format(dice)

答案 1 :(得分:0)

如果您使用的内容超过2个类(也就是1和0的掩码),这是一个重要的说明。

如果您使用多个类,请确保指定预测和基础事实也等于您想要的值。否则,您最终可能会得到大于1的DSC值。

这是每个==k声明末尾的额外[]

import numpy as np

k=1

# segmentation
seg = np.zeros((100,100), dtype='int')
seg[30:70, 30:70] = k

# ground truth
gt = np.zeros((100,100), dtype='int')
gt[30:70, 40:80] = k

dice = np.sum(seg[gt==k]==k)*2.0 / (np.sum(seg[seg==k]==k) + np.sum(gt[gt==k]==k))

print 'Dice similarity score is {}'.format(dice)

答案 2 :(得分:0)

如果您使用的是opencv,则可以使用以下功能:

import cv2
import numpy as np

#load images
y_pred = cv2.imread('predictions/image_001.png')
y_true = cv2.imread('ground_truth/image_001.png') 

# Dice similarity function
def dice(pred, true, k = 1):
    intersection = np.sum(pred[true==k]) * 2.0
    dice = intersection / (np.sum(pred) + np.sum(true))
    return dice

dice_score = dice(y_pred, y_true, k = 255) #255 in my case, can be 1 
print ("Dice Similarity: {}".format(dice_score))

如果您想使用tensorflow在深度学习模型中使用此指标进行评估,则可以使用以下内容:

def dice_coef(y_true, y_pred):
    y_true_f = tf.reshape(tf.dtypes.cast(y_true, tf.float32), [-1])
    y_pred_f = tf.reshape(tf.dtypes.cast(y_pred, tf.float32), [-1])
    intersection = tf.reduce_sum(y_true_f * y_pred_f)
    return (2. * intersection + 1.) / (tf.reduce_sum(y_true_f) + tf.reduce_sum(y_pred_f) + 1.)