我有一个m x 3
矩阵A
及其行子集B
(n x 3
)。两者都是另一个大型4D矩阵的指数集;他们的数据类型是dtype('int64')
。我想生成一个布尔向量x
,其中x[i] = True
如果B
不包含行A[i,:]
。
A
或B
中没有重复的行。
我想知道在Numpy中是否有一种有效的方法可以做到这一点?我找到了一个有点相关的答案:https://stackoverflow.com/a/11903368/265289;但是,它返回实际的行(不是布尔向量)。
答案 0 :(得分:4)
您可以使用jterrace's answer中显示的相同模式,但使用np.in1d
代替np.setdiff1d
除外:
import numpy as np
np.random.seed(2015)
m, n = 10, 5
A = np.random.randint(10, size=(m,3))
B = A[np.random.choice(m, n, replace=False)]
print(A)
# [[2 2 9]
# [6 8 5]
# [7 8 0]
# [6 7 8]
# [3 8 6]
# [9 2 3]
# [1 2 6]
# [2 9 8]
# [5 8 4]
# [8 9 1]]
print(B)
# [[2 2 9]
# [1 2 6]
# [2 9 8]
# [3 8 6]
# [9 2 3]]
def using_view(A, B, assume_unique=False):
Ad = np.ascontiguousarray(A).view([('', A.dtype)] * A.shape[1])
Bd = np.ascontiguousarray(B).view([('', B.dtype)] * B.shape[1])
return ~np.in1d(Ad, Bd, assume_unique=assume_unique)
print(using_view(A, B, assume_unique=True))
产量
[False True True True False False False False True True]
您可以使用assume_unique=True
(可以加快计算速度)
A
或B
中没有重复的行。
请注意A.view(...)
将提升
ValueError: new type not compatible with array.
如果A.flags['C_CONTIGUOUS']
是False
(即如果A
不是C连续数组)。
因此,通常我们需要在调用np.ascontiguous(A)
之前使用view
。
作为B.M.建议,您可以使用"void" dtype:
查看每一行def using_void(A, B):
dtype = 'V{}'.format(A.dtype.itemsize * A.shape[-1])
Ad = np.ascontiguousarray(A).view(dtype)
Bd = np.ascontiguousarray(B).view(dtype)
return ~np.in1d(Ad, Bd, assume_unique=True)
这对于整数dtypes使用是安全的。但请注意
In [342]: np.array([-0.], dtype='float64').view('V8') == np.array([0.], dtype='float64').view('V8')
Out[342]: array([False], dtype=bool)
因此在查看为void后使用np.in1d
可能会返回不正确的数组结果
用float dtype。
以下是一些提议方法的基准:
import numpy as np
np.random.seed(2015)
m, n = 10000, 5000
# Note A may contain duplicate rows,
# so don't use assume_unique=True for these benchmarks.
# In this case, using assume_unique=False does not improve the speed much anyway.
A = np.random.randint(10, size=(2*m,3))
# make A not C_CONTIGUOUS; the view methods fail for non-contiguous arrays
A = A[::2]
B = A[np.random.choice(m, n, replace=False)]
def using_view(A, B, assume_unique=False):
Ad = np.ascontiguousarray(A).view([('', A.dtype)] * A.shape[1])
Bd = np.ascontiguousarray(B).view([('', B.dtype)] * B.shape[1])
return ~np.in1d(Ad, Bd, assume_unique=assume_unique)
from scipy.spatial import distance
def using_distance(A, B):
return ~np.any(distance.cdist(A,B)==0,1)
from functools import reduce
def using_loop(A, B):
pred = lambda i: A[:, i:i+1] == B[:, i]
return ~reduce(np.logical_and, map(pred, range(A.shape[1]))).any(axis=1)
from pandas.core.groupby import get_group_index, _int64_overflow_possible
from functools import partial
def using_pandas(A, B):
shape = [1 + max(A[:, i].max(), B[:, i].max()) for i in range(A.shape[1])]
assert not _int64_overflow_possible(shape)
encode = partial(get_group_index, shape=shape, sort=False, xnull=False)
a1, b1 = map(encode, (A.T, B.T))
return ~np.in1d(a1, b1)
def using_void(A, B):
dtype = 'V{}'.format(A.dtype.itemsize * A.shape[-1])
Ad = np.ascontiguousarray(A).view(dtype)
Bd = np.ascontiguousarray(B).view(dtype)
return ~np.in1d(Ad, Bd)
# Sanity check: make sure all the functions return the same result
for func in (using_distance, using_loop, using_pandas, using_void):
assert (func(A, B) == using_view(A, B)).all()
In [384]: %timeit using_pandas(A, B)
100 loops, best of 3: 1.99 ms per loop
In [381]: %timeit using_void(A, B)
100 loops, best of 3: 6.72 ms per loop
In [378]: %timeit using_view(A, B)
10 loops, best of 3: 35.6 ms per loop
In [383]: %timeit using_loop(A, B)
1 loops, best of 3: 342 ms per loop
In [379]: %timeit using_distance(A, B)
1 loops, best of 3: 502 ms per loop
答案 1 :(得分:3)
因为只有3列,所以一个解决方案就是 reduce 跨列:
>>> a
array([[2, 2, 9],
[6, 8, 5],
[7, 8, 0],
[6, 7, 8],
[3, 8, 6],
[9, 2, 3],
[1, 2, 6],
[2, 9, 8],
[5, 8, 4],
[8, 9, 1]])
>>> b
array([[2, 2, 9],
[1, 2, 6],
[2, 9, 8],
[3, 8, 6],
[9, 2, 3]])
>>> from functools import reduce
>>> pred = lambda i: a[:, i:i+1] == b[:,i]
>>> reduce(np.logical_and, map(pred, range(a.shape[1]))).any(axis=1)
array([ True, False, False, False, True, True, True, True, False, False], dtype=bool)
虽然这会创建一个m x n
中间数组,但这可能不是内存效率。
或者,如果值为 indices ,即非负整数,则可以使用pandas.groupby.get_group_index
缩减为一维数组。这是一个有效的算法,大熊猫在内部用于groupby
操作;唯一需要注意的是,您可能需要验证是否存在任何整数溢出:
>>> from pandas.core.groupby import get_group_index, _int64_overflow_possible
>>> from functools import partial
>>> shape = [1 + max(a[:, i].max(), b[:, i].max()) for i in range(a.shape[1])]
>>> assert not _int64_overflow_possible(shape)
>>> encode = partial(get_group_index, shape=shape, sort=False, xnull=False)
>>> a1, b1 = map(encode, (a.T, b.T))
>>> np.in1d(a1, b1)
array([ True, False, False, False, True, True, True, True, False, False], dtype=bool)
答案 2 :(得分:0)
您可以将A
和B
视为两组XYZ数组,并使用scipy.spatial.distance.cdist
计算它们之间的euclidean distances
。零距离对我们来说很重要。这个距离计算应该是一个非常有效的实现,所以希望我们有一个有效的解决方案来解决我们的情况。所以,找到这样一个布尔输出的实现看起来像这样 -
from scipy.spatial import distance
out = ~np.any(distance.cdist(A,B)==0,1)
# OR np.all(distance.cdist(A,B)!=0,1)
示例运行 -
In [582]: A
Out[582]:
array([[0, 2, 2],
[1, 0, 3],
[3, 3, 3],
[2, 0, 3],
[2, 0, 1],
[1, 1, 1]])
In [583]: B
Out[583]:
array([[2, 0, 3],
[2, 3, 3],
[1, 1, 3],
[2, 0, 1],
[0, 2, 2],
[2, 2, 2],
[1, 2, 3]])
In [584]: out
Out[584]: array([False, True, True, False, False, True], dtype=bool)