现在我正在编写一个Spark流程序来检测数据中心的网络异常。我尝试使用回归算法。例如,我使用训练数据集来计算模型(即coef),然后如何在数据流中使用此先前计算的模型。我使用以下连接,但获得异常。
Traceback (most recent call last):
File "/home/xiuli/PycharmProjects/benchmark/parx.py", line 98, in <module>
joinedStream = testRDD.join(trainingRDD)
File "/opt/spark-1.4.0-bin-hadoop2.6/python/lib/pyspark.zip/pyspark/streaming/dstream.py", line 362, in join
File "/opt/spark-1.4.0-bin-hadoop2.6/python/lib/pyspark.zip/pyspark/streaming/dstream.py", line 313, in transformWith
AttributeError: 'PipelinedRDD' object has no attribute '_jdstream'
我可以看到Spark流媒体指南提供an example,但它缺乏细节。
Stream-dataset join
前面已经说明了DStream.transform 操作。这是加入窗口流的另一个例子 用数据集。
dataset = ... # some RDD
windowedStream = stream.window(20)
joinedStream = windowedStream.transform(lambda rdd: rdd.join(dataset))
以下是我的代码:
from __future__ import print_function
import sys,os,datetime
from pyspark import SparkContext
from pyspark.streaming import StreamingContext
from pyspark.sql.context import SQLContext
from pyspark.resultiterable import ResultIterable
from pyspark.mllib.regression import LabeledPoint, LinearRegressionWithSGD
import numpy as np
import statsmodels.api as sm
def splitLine(line, delimiter='|'):
values = line.split(delimiter)
st = datetime.datetime.strptime(values[1], '%Y-%m-%d %H:%M:%S')
return (values[0],st.hour), values[2:]
def reg_m(y, x):
ones = np.ones(len(x[0]))
X = sm.add_constant(np.column_stack((x[0], ones)))
for ele in x[1:]:
X = sm.add_constant(np.column_stack((ele, X)))
results = sm.OLS(y, X).fit()
return results
def train(line):
y,x = [],[]
y, x = [],[[],[],[],[],[],[]]
reading_tmp,temp_tmp = [],[]
i = 0
for reading, temperature in line[1]:
if i%4==0 and len(reading_tmp)==4:
y.append(reading_tmp.pop())
x[0].append(reading_tmp.pop())
x[1].append(reading_tmp.pop())
x[2].append(reading_tmp.pop())
temp = float(temp_tmp[0])
del temp_tmp[:]
x[3].append(temp-20.0 if temp>20.0 else 0.0)
x[4].append(16.0-temp if temp<16.0 else 0.0)
x[5].append(5.0-temp if temp<5.0 else 0.0)
reading_tmp.append(float(reading))
temp_tmp.append(float(temperature))
i = i + 1
return str(line[0]),reg_m(y, x).params.tolist()
def detect(line):
y,x = [],[]
y, x = [],[[],[],[],[],[],[]]
reading_tmp,temp_tmp = [],[]
i = 0
for reading, temperature in line[1]:
if i%4==0 and len(reading_tmp)==4:
y.append(reading_tmp.pop())
x[0].append(reading_tmp.pop())
x[1].append(reading_tmp.pop())
x[2].append(reading_tmp.pop())
temp = float(temp_tmp[0])
del temp_tmp[:]
x[3].append(temp-20.0 if temp>20.0 else 0.0)
x[4].append(16.0-temp if temp<16.0 else 0.0)
x[5].append(5.0-temp if temp<5.0 else 0.0)
reading_tmp.append(float(reading))
temp_tmp.append(float(temperature))
i = i + 1
return line[0],reg_m(y, x).params.tolist()
if __name__ == "__main__":
if len(sys.argv) != 4:
print("Usage: parx.py <checkpointDir> <trainingDataDir> <streamDataDir>", file=sys.stderr)
exit(-1)
checkpoint, trainingInput, streamInput = sys.argv[1:]
sc = SparkContext("local[2]", appName="BenchmarkSparkStreaming")
trainingLines = sc.textFile(trainingInput)
trainingRDD = trainingLines.map(lambda line: splitLine(line, "|"))\
.groupByKey()\
.map(lambda line: train(line)).cache()
ssc = StreamingContext(sc, 1)
ssc.checkpoint(checkpoint)
lines = ssc.textFileStream(streamInput).map(lambda line: splitLine(line, "|"))
testRDD = lines.groupByKeyAndWindow(1,1).map(lambda line:(str(line[0]), line[1]))
joinedStream = testRDD.join(trainingRDD)
joinedStream.pprint(20)
ssc.start()
ssc.awaitTermination()
答案 0 :(得分:1)
根据您提到的文档,请尝试:
{{1}}