使用列作为参数在data.table中按行应用函数

时间:2015-06-08 19:08:32

标签: r data.table

我正在尝试使用data.table并将列作为参数来按行应用函数。我目前正在使用建议申请here

但是,我的data.table是2700万行,有7列,所以当我在许多输入文件上递归运行时,apply操作需要很长时间,该作业占用所有可用的RAM(32Gb)。我可能会多次复制data.table,但我不确定。

我想帮助使这段代码更具内存效率,因为每个输入文件大约有3千万行乘7列,并且有30个输入文件需要处理。我很相信使用apply的行会减慢整个代码的速度,因此更有效的内存或使用矢量化函数的替代方案可能是更好的选择。

我在尝试编写一个向量化函数时遇到了很多麻烦,该函数接受4列作为参数并使用data.table逐行操作。我的示例代码中的apply解决方案有效,但速度非常慢。我尝试的另一种选择是:

cols=c("C","T","A","G")
func1<-function(x)x[max1(x)]
datU[,high1a:=func1(cols),by=1:nrow(datU)]

但是datU data.table输出的前6行如下所示:

    Cycle   Tab ID  colA    colB    colC    colG    high1   high1a
1   0   45513   -233.781    -84.087 -3.141  3740.916    3740.916    colC
2   0   45513   -103.561    -347.382    2900.866    357.071 2900.866    colC
3   0   45513   153.383 4036.636    353.479 -42.736 4036.636    colC
4   0   45513   -147.941    28.994  4354.994    384.945 4354.994    colC
5   0   45513   -89.719 -504.643    1298.476    131.32  1298.476    colC
6   0   45513   -250.11 -30.862 1877.049    -184.772    1877.049    colC

这是我的代码使用apply工作(它产生了上面的high1列),但速度太慢且内存密集:

#Get input files from top directory, searching through all subdirectories
    file_list <- list.files(pattern = "*.test.txt", recursive=TRUE, full.names=TRUE)

#Make a loop to recursively read files from subdirectories, determine highest and second highest values in specified columns, create new column with those values

    savelist=NULL
    for (i in file_list) {

    datU <- fread(i)
    name=dirname(i)

    #Compute highest and second highest for each row (cols 4,5,6,7) and the difference between highest and second highest values
    maxn <- function(n) function(x) order(x, decreasing = TRUE)[n]
    max1 <- maxn(1)
    max2 <- maxn(2)
    colNum=c(4,5,6,7)
    datU[,high1:=apply(datU[,colNum,with=FALSE],1,function(x)x[max1(x)])])
    datU[,high2:=apply(datU[,colNum,with=FALSE],1,function(x)x[max2(x)])]
    datU[,difference:=high1-high2,by=1:nrow(datU)]
    datU[,folder:=name]
    savelist[[i]]<-datU

}

#Create loop to iterate over folders and output data

sigout=NULL
for (i in savelist) {

   # Do some stuff to manipulate data frames, then merge them for output
setkey(i,Cycle,folder)
Sums1<-i[,sum(colA,colB,colC,colD),by=list(Cycle,folder)]
MeanTot<-Sums[,round(mean(V1),3),by=list(Cycle,folder)]
MeanTotsd<-Sums[,round(sd(V1),3),by=list(Cycle,folder)]
Meandiff<-i[,list(meandiff=mean(difference)),by=list(Cycle,folder)]
Meandiffsd<-i[,list(meandiff=sd(difference)),by=list(Cycle,folder)]

df1out<-merge(MeanTot,MeanTotsd,by=list(Cycle,folder))
df2out<-merge(Meandiff,Meandiffsd,by=list(Cycle,folder))
sigout<-merge(df1out,df2out)

#Output values 
write.table(sigout,"Sigout.txt",append=TRUE,quote=FALSE,sep=",",row.names=FALSE,col.names=TRUE)
}

我希望有一些关于要应用的替代函数的示例,它将为列4,5,6,7的每一行提供最高和第二高的值,可以通过索引或列名来识别。

谢谢!

2 个答案:

答案 0 :(得分:2)

你可以这样做:

DF <- read.table(text = "    Cycle   Tab ID  colA    colB    colC    colG    high1   high1a
1   0   45513   -233.781    -84.087 -3.141  3740.916    3740.916    colC
                 2   0   45513   -103.561    -347.382    2900.866    357.071 2900.866    colC
                 3   0   45513   153.383 4036.636    353.479 -42.736 4036.636    colC
                 4   0   45513   -147.941    28.994  4354.994    384.945 4354.994    colC
                 5   0   45513   -89.719 -504.643    1298.476    131.32  1298.476    colC
                 6   0   45513   -250.11 -30.862 1877.049    -184.772    1877.049    colC", header = TRUE)

library(data.table)
setDT(DF)

maxTwo <- function(x) {
  ind <- length(x) - (1:0) #the index is equal for all rows,
                           #so it could be made a function parameter
                           #for better efficiency
  as.list(sort.int(x, partial = ind)[ind]) #partial sorting
}

DF[, paste0("max", 1:2) := maxTwo(unlist(.SD)), 
    by = seq_len(nrow(DF)), .SDcols = 4:7]
DF[, diffMax := max2 - max1]

#   Cycle Tab    ID     colA     colB     colC     colG    high1 high1a    max1     max2  diffMax
#1:     1   0 45513 -233.781  -84.087   -3.141 3740.916 3740.916   colC  -3.141 3740.916 3744.057
#2:     2   0 45513 -103.561 -347.382 2900.866  357.071 2900.866   colC 357.071 2900.866 2543.795
#3:     3   0 45513  153.383 4036.636  353.479  -42.736 4036.636   colC 353.479 4036.636 3683.157
#4:     4   0 45513 -147.941   28.994 4354.994  384.945 4354.994   colC 384.945 4354.994 3970.049
#5:     5   0 45513  -89.719 -504.643 1298.476  131.320 1298.476   colC 131.320 1298.476 1167.156
#6:     6   0 45513 -250.110  -30.862 1877.049 -184.772 1877.049   colC -30.862 1877.049 1907.911

但是,您仍然会循环遍历行,这意味着nrow调用该函数。您可以尝试使用Rcpp在已编译的代码中进行循环。

答案 1 :(得分:1)

取决于您希望如何处理重复项,例如如果你没有它们或想要将它们组合在一起,你可以这样做:

d = data.table(a = 1:4, b = 4:1, c = c(2,1,1,4))
#   a b c
#1: 1 4 2
#2: 2 3 1
#3: 3 2 1
#4: 4 1 4

high1 = do.call(pmax, d)
#[1] 4 3 3 4
high2 = do.call(pmax, d * (d != high1))
#[1] 2 2 2 1

否则,您可能只是在精度范围之外添加一些抖动(我选择了大量的抖动以使其可见):

d.jitter = d + runif(nrow(d) * ncol(d), 0, 1e-4)
#          a        b        c
#1: 1.000044 4.000090 2.000008
#2: 2.000076 3.000029 1.000034
#3: 3.000007 2.000029 1.000036
#4: 4.000001 1.000069 4.000041

high1.j = do.call(pmax, d.jitter)
high2 = do.call(pmax, d * (d.jitter != high1.j))
#[1] 2 2 2 4

向相关.SD.SDcols语义的翻译留给读者一个简单的练习。