Neo4j和Java:Iterable <relationship>的快速随机样本

时间:2015-05-31 09:39:20

标签: java neo4j guava

我在Java中编写了一个遍历,它返回了一个Iterable。 最坏情况是850784关系的可变大小。

目标:我想抽样(没有替换)只有20个关系,我想快速完成。

解决方案1 ​​:执行toList()或将其投放到某种Collection需要花费太多时间(> 1分钟)。我知道我可以充分利用shuffle()功能等等,但这是不可接受的。

解决方案2 :因此,为了直接在Iterable上执行此操作,我使用了 guava collect库,我对于以下3个步骤中的每个步骤,包括以毫秒为单位的时间(使用System.nanoTime()计算并除以1000000)。我需要为随机数生成器取Iterable的大小,这是一个真正的瓶颈。

    /* TRAVERSAL: 5 ms */
    Iterable<Relationship> simrels = traversal1.traverse(user).relationships();

    /* GET ITERABLE SIZE: 74669 ms */
    int simrelssize = com.google.common.collect.Iterables.size(simrels);

    /* RANDOM SAMPLE OF 20: 28321 ms*/
    long seed = System.nanoTime();
    int[] idxs = new int[20];
    Random randomGenerator = new XSRandom(seed);
    for (int i = 0; i < idxs.length; ++i){
        int randomInt = randomGenerator.nextInt(simrelssize);
        idxs[i]=randomInt;
    }
    Arrays.sort(idxs);

    List<Relationship> simrelslist2 = new ArrayList<Relationship>();
    for(int i = 0; i < idxs.length; ++i){
        if (i > 0) {
            int pos = idxs[i]-idxs[i-1];
            simrelslist2.add(com.google.common.collect.Iterables.get(simrels, pos));
        }
        else{
            simrelslist2.add(com.google.common.collect.Iterables.get(simrels, idxs[i]));
        }
    }

如何优化此代码以加快速度?

注意:我有一台Windows 8.1 PC,i5 2.30GHz,RAM 16GB,HDD 1TB

根据Michal的要求,请查看以下文件内容:

的Neo4j-包装

#********************************************************************
# Property file references
#********************************************************************

wrapper.java.additional=-Dorg.neo4j.server.properties=conf/neo4j-server.properties
wrapper.java.additional=-Djava.util.logging.config.file=conf/logging.properties
wrapper.java.additional=-Dlog4j.configuration=file:conf/log4j.properties

#********************************************************************
# JVM Parameters
#********************************************************************

wrapper.java.additional=-XX:+UseConcMarkSweepGC
wrapper.java.additional=-XX:+CMSClassUnloadingEnabled
wrapper.java.additional=-XX:-OmitStackTraceInFastThrow

# Remote JMX monitoring, uncomment and adjust the following lines as needed.
# Also make sure to update the jmx.access and jmx.password files with appropriate permission roles and passwords,
# the shipped configuration contains only a read only role called 'monitor' with password 'Neo4j'.
# For more details, see: http://download.oracle.com/javase/7/docs/technotes/guides/management/agent.html
# On Unix based systems the jmx.password file needs to be owned by the user that will run the server,
# and have permissions set to 0600.
# For details on setting these file permissions on Windows see:
#     http://docs.oracle.com/javase/7/docs/technotes/guides/management/security-windows.html
#wrapper.java.additional=-Dcom.sun.management.jmxremote.port=3637
#wrapper.java.additional=-Dcom.sun.management.jmxremote.authenticate=true
#wrapper.java.additional=-Dcom.sun.management.jmxremote.ssl=false
#wrapper.java.additional=-Dcom.sun.management.jmxremote.password.file=conf/jmx.password
#wrapper.java.additional=-Dcom.sun.management.jmxremote.access.file=conf/jmx.access

# Some systems cannot discover host name automatically, and need this line configured:
#wrapper.java.additional=-Djava.rmi.server.hostname=$THE_NEO4J_SERVER_HOSTNAME

# Uncomment the following lines to enable garbage collection logging
#wrapper.java.additional=-Xloggc:data/log/neo4j-gc.log
#wrapper.java.additional=-XX:+PrintGCDetails
#wrapper.java.additional=-XX:+PrintGCDateStamps
#wrapper.java.additional=-XX:+PrintGCApplicationStoppedTime
#wrapper.java.additional=-XX:+PrintPromotionFailure
#wrapper.java.additional=-XX:+PrintTenuringDistribution

# Java Heap Size: by default the Java heap size is dynamically
# calculated based on available system resources.
# Uncomment these lines to set specific initial and maximum
# heap size in MB.
wrapper.java.initmemory=8192
wrapper.java.maxmemory=10240

#********************************************************************
# Wrapper settings
#********************************************************************
# path is relative to the bin dir
wrapper.pidfile=../data/neo4j-server.pid

#********************************************************************
# Wrapper Windows NT/2000/XP Service Properties
#********************************************************************
# WARNING - Do not modify any of these properties when an application
#  using this configuration file has been installed as a service.
#  Please uninstall the service before modifying this section.  The
#  service can then be reinstalled.

# Name of the service
wrapper.name=neo4j

# User account to be used for linux installs. Will default to current
# user if not set.
wrapper.user=

neo4j.properties

# Enable this to be able to upgrade a store from an older version.
#allow_store_upgrade=true

# The amount of memory to use for mapping the store files, either in bytes or
# as a percentage of available memory. This will be clipped at the amount of
# free memory observed when the database starts, and automatically be rounded
# down to the nearest whole page. For example, if "500MB" is configured, but
# only 450MB of memory is free when the database starts, then the database will
# map at most 450MB. If "50%" is configured, and the system has a capacity of
# 4GB, then at most 2GB of memory will be mapped, unless the database observes
# that less than 2GB of memory is free when it starts.
#mapped_memory_total_size=50%

# Enable this to specify a parser other than the default one.
#cypher_parser_version=2.0

# Keep logical logs, helps debugging but uses more disk space, enabled for
# legacy reasons To limit space needed to store historical logs use values such
# as: "7 days" or "100M size" instead of "true".
#keep_logical_logs=7 days

# Autoindexing

# Enable auto-indexing for nodes, default is false.
#node_auto_indexing=true

# The node property keys to be auto-indexed, if enabled.
#node_keys_indexable=name,age

# Enable auto-indexing for relationships, default is false.
#relationship_auto_indexing=true

# The relationship property keys to be auto-indexed, if enabled.
#relationship_keys_indexable=name,age

# Enable shell server so that remote clients can connect via Neo4j shell.
#remote_shell_enabled=true
# The network interface IP the shell will listen on (use 0.0.0 for all interfaces).
#remote_shell_host=127.0.0.1
# The port the shell will listen on, default is 1337.
#remote_shell_port=1337

# The type of cache to use for nodes and relationships.
#cache_type=hpc

# Maximum size of the heap memory to dedicate to the cached nodes.
#node_cache_size=

# Maximum size of the heap memory to dedicate to the cached relationships.
#relationship_cache_size=

# Enable online backups to be taken from this database.
online_backup_enabled=true

# Port to listen to for incoming backup requests.
online_backup_server=127.0.0.1:6362


# Uncomment and specify these lines for running Neo4j in High Availability mode.
# See the High availability setup tutorial for more details on these settings
# http://neo4j.com/docs/2.2.0-M02/ha-setup-tutorial.html

# ha.server_id is the number of each instance in the HA cluster. It should be
# an integer (e.g. 1), and should be unique for each cluster instance.
#ha.server_id=

# ha.initial_hosts is a comma-separated list (without spaces) of the host:port
# where the ha.cluster_server of all instances will be listening. Typically
# this will be the same for all cluster instances.
#ha.initial_hosts=192.168.0.1:5001,192.168.0.2:5001,192.168.0.3:5001

# IP and port for this instance to listen on, for communicating cluster status
# information iwth other instances (also see ha.initial_hosts). The IP
# must be the configured IP address for one of the local interfaces.
#ha.cluster_server=192.168.0.1:5001

# IP and port for this instance to listen on, for communicating transaction
# data with other instances (also see ha.initial_hosts). The IP
# must be the configured IP address for one of the local interfaces.
#ha.server=192.168.0.1:6001

# The interval at which slaves will pull updates from the master. Comment out
# the option to disable periodic pulling of updates. Unit is seconds.
ha.pull_interval=10

# Amount of slaves the master will try to push a transaction to upon commit
# (default is 1). The master will optimistically continue and not fail the
# transaction even if it fails to reach the push factor. Setting this to 0 will
# increase write performance when writing through master but could potentially
# lead to branched data (or loss of transaction) if the master goes down.
#ha.tx_push_factor=1

# Strategy the master will use when pushing data to slaves (if the push factor
# is greater than 0). There are two options available "fixed" (default) or
# "round_robin". Fixed will start by pushing to slaves ordered by server id
# (highest first) improving performance since the slaves only have to cache up
# one transaction at a time.
#ha.tx_push_strategy=fixed

# Policy for how to handle branched data.
#branched_data_policy=keep_all

# Clustering timeouts
# Default timeout.
#ha.default_timeout=5s

# How often heartbeat messages should be sent. Defaults to ha.default_timeout.
#ha.heartbeat_interval=5s

# Timeout for heartbeats between cluster members. Should be at least twice that of ha.heartbeat_interval.
#heartbeat_timeout=11s

2 个答案:

答案 0 :(得分:0)

您有Traverser

Traverser traverser = traversal1.traverse(user);
int size = traverser.metadata().getNumberOfRelationshipsTraversed();
Iterable<Relationship> simrels = traverser.relationships();

现在你有了自己的体型,可以优化你的随机选择器。

答案 1 :(得分:0)

Neo4j返回Iterable的原因是它在你重复迭代时执行遍历。为了抽样,我担心你必须去&#34;访问&#34;每一段关系。是的,你可以跳过一些,但你仍然必须在一天结束时遍历所有这些。

我们正在使用&#34;水库采样&#34;算法,implemented here。由于上述原因,不确定它会表现得更好。也就是说,您应该能够在不到1秒的时间内使用热缓存对1M关系进行采样。如果花费的时间超过了这个时间,您可能需要稍微调整一下内存设置。