我有一个应用程序从表中选择一个加权随机条目,其中前缀总和(权重)是关键部分。简化的表定义如下所示:
CREATE TABLE entries (
id INT NOT NULL PRIMARY KEY AUTO_INCREMENT,
weight DECIMAL(9, 3),
fenwick DECIMAL(9, 3)
) ENGINE=MEMORY;
其中`fenwick`
将值存储在`weights`
的Fenwick树表示中。
让每个条目的“范围”跨越其前缀和与其前缀sum +其权重之间。应用程序必须在@r
和0
之间生成一个随机数SUM(weight)
,并找到其范围包含@r
的条目,如下所示:
Fenwick树结合MEMORY
引擎和二分搜索,应该允许我在O(lg^2(n))
时间内找到相应的条目,而不是O(n)
时间与天真的查询:
SELECT a.id-1 FROM (SELECT *, (@x:=@x+weight) AS counter FROM entries
CROSS JOIN (SELECT @x:=0) a
HAVING counter>@r LIMIT 1) a;
由于多个查询的开销,我一直在尝试将前缀sum操作压缩为一个查询(而不是脚本语言中的几个数组访问)。在这个过程中,我意识到传统的求和方法,即涉及按降序键顺序访问元素,只会求和第一个元素。我怀疑MySQL在WHERE
子句中存在变量时线性地运行表。这是查询:
SELECT
SUM(1) INTO @garbage
FROM entries
CROSS JOIN (
SELECT @sum:=0,
@n:=@entryid
) a
WHERE id=@n AND @n>0 AND (@n:=@n-(@n&(-@n))) AND (@sum:=@sum+entries.fenwick);
/*SELECT @sum*/
其中@entryid
是我们正在计算其前缀和的条目的ID。我确实创建了一个可以工作的查询(以及一个返回整数最左边位的函数lft
):
SET @n:=lft(@entryid);
SET @sum:=0;
SELECT
SUM(1) INTO @garbage
FROM entries
WHERE id=@n
AND @n<=@entryid
AND (@n:=@n+lft(@entryid^@n))
AND (@sum:=@sum+entries.fenwick);
/*SELECT @sum*/
但它只证实了我对线性搜索的怀疑。 EXPLAIN
查询也是如此:
+------+-------------+---------+------+---------------+------+---------+------+--------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+------+-------------+---------+------+---------------+------+---------+------+--------+-------------+
| 1 | SIMPLE | entries | ALL | NULL | NULL | NULL | NULL | 752544 | Using where |
+------+-------------+---------+------+---------------+------+---------+------+--------+-------------+
1 row in set (0.00 sec)
索引:
SHOW INDEXES FROM entries;
+---------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment |
+---------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| entries | 0 | PRIMARY | 1 | id | NULL | 752544 | NULL | NULL | | HASH | | |
+---------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
1 row in set (0.00 sec)
现在,我已经看到很多问题,询问如何在WHERE
子句中消除变量,以便优化器可以处理查询。但是,我想不出这种查询在没有id=@n
的情况下可以做到的方式。我已经考虑将我想要求的条目的关键值放入表中并使用连接,但我相信我会得到不良影响:要么过多的表,要么通过评估@entryid
进行线性搜索无论如何。
是否有任何方式强制MySQL使用此查询的索引?如果他们提供此功能,我甚至会尝试不同的DBMS。
答案 0 :(得分:3)
Fenwick树对我来说是新的,我只是在找到这篇文章时才发现它们。 这里给出的结果是基于我的理解和一些研究, 但我绝不是一个芬威克树专家,我可能错过了一些东西。
说明fenwick树是如何工作的
https://stackoverflow.com/a/15444954/1157540转载自 https://cs.stackexchange.com/a/10541/38148
https://cs.stackexchange.com/a/42816/38148
fenwick树的用法
https://en.wikipedia.org/wiki/Fenwick_tree
https://en.wikipedia.org/wiki/Prefix_sum
给出下表
CREATE TABLE `entries` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`weight` decimal(9,3) DEFAULT NULL,
`fenwick` decimal(9,3) NOT NULL DEFAULT '0.000',
PRIMARY KEY (`id`)
) ENGINE=INNODB;
并且已经填充了给定数据(请参阅concat提供的http://sqlfiddle.com/#!9/be1f2/1),
如何计算给定条目的权重@entryid
?
这里要理解的关键概念是,fenwick索引的结构基于id值本身的数学和按位运算。
查询通常只应使用主键查找(WHERE ID = value
)。
使用排序(ORDER BY
)或范围(WHERE (value1 < ID) AND (ID < value2))
的任何查询都会错过该点,并且不会按预期的顺序遍历树。
例如,使用密钥60:
SET @entryid := 60;
让我们用二进制
分解值60mysql> SELECT (@entryid & 0x0080) as b8,
-> (@entryid & 0x0040) as b7,
-> (@entryid & 0x0020) as b6,
-> (@entryid & 0x0010) as b5,
-> (@entryid & 0x0008) as b4,
-> (@entryid & 0x0004) as b3,
-> (@entryid & 0x0002) as b2,
-> (@entryid & 0x0001) as b1;
+------+------+------+------+------+------+------+------+
| b8 | b7 | b6 | b5 | b4 | b3 | b2 | b1 |
+------+------+------+------+------+------+------+------+
| 0 | 0 | 32 | 16 | 8 | 4 | 0 | 0 |
+------+------+------+------+------+------+------+------+
1 row in set (0.00 sec)
换句话说,只保留设置的位,我们有
32 + 16 + 8 + 4 = 60
现在,逐个删除设置的最低位以导航树:
32 + 16 + 8 + 4 = 60
32 + 16 + 8 = 56
32 + 16 = 48
32
这给出了访问元素60的路径(32,48,56,60)。
请注意,将60
转换为(32, 48, 56, 60)
只需要对ID值本身进行位数学运算:不需要访问表或数据库,并且可以在发出查询的客户端中完成此计算
元素60的分数权重
mysql> select sum(fenwick) from entries where id in (32, 48, 56, 60);
+--------------+
| sum(fenwick) |
+--------------+
| 32.434 |
+--------------+
1 row in set (0.00 sec)
验证
mysql> select sum(weight) from entries where id <= @entryid;
+-------------+
| sum(weight) |
+-------------+
| 32.434 |
+-------------+
1 row in set (0.00 sec)
现在,我们来比较这些查询的效率。
mysql> explain select sum(fenwick) from entries where id in (32, 48, 56, 60);
+----+-------------+---------+------------+-------+---------------+---------+---------+------+------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+---------+------------+-------+---------------+---------+---------+------+------+----------+-------------+
| 1 | SIMPLE | entries | NULL | range | PRIMARY | PRIMARY | 4 | NULL | 4 | 100.00 | Using where |
+----+-------------+---------+------------+-------+---------------+---------+---------+------+------+----------+-------------+
或以不同的方式呈现
explain format=json select sum(fenwick) from entries where id in (32, 48, 56, 60);
{
"query_block": {
"select_id": 1,
"cost_info": {
"query_cost": "5.61"
},
"table": {
"table_name": "entries",
"access_type": "range",
"possible_keys": [
"PRIMARY"
],
"key": "PRIMARY",
"used_key_parts": [
"id"
],
"key_length": "4",
"rows_examined_per_scan": 4,
"rows_produced_per_join": 4,
"filtered": "100.00",
"cost_info": {
"read_cost": "4.81",
"eval_cost": "0.80",
"prefix_cost": "5.61",
"data_read_per_join": "64"
},
"used_columns": [
"id",
"fenwick"
],
"attached_condition": "(`test`.`entries`.`id` in (32,48,56,60))"
}
}
因此,优化器按主键获取了4行(IN子句中有4个值)。
当不使用fenwick索引时,我们有
mysql> explain select sum(weight) from entries where id <= @entryid;
+----+-------------+---------+------------+-------+---------------+---------+---------+------+------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+---------+------------+-------+---------------+---------+---------+------+------+----------+-------------+
| 1 | SIMPLE | entries | NULL | range | PRIMARY | PRIMARY | 4 | NULL | 60 | 100.00 | Using where |
+----+-------------+---------+------------+-------+---------------+---------+---------+------+------+----------+-------------+
或者,以不同的方式呈现
explain format=json select sum(weight) from entries where id <= @entryid;
{
"query_block": {
"select_id": 1,
"cost_info": {
"query_cost": "25.07"
},
"table": {
"table_name": "entries",
"access_type": "range",
"possible_keys": [
"PRIMARY"
],
"key": "PRIMARY",
"used_key_parts": [
"id"
],
"key_length": "4",
"rows_examined_per_scan": 60,
"rows_produced_per_join": 60,
"filtered": "100.00",
"cost_info": {
"read_cost": "13.07",
"eval_cost": "12.00",
"prefix_cost": "25.07",
"data_read_per_join": "960"
},
"used_columns": [
"id",
"weight"
],
"attached_condition": "(`test`.`entries`.`id` <= (@`entryid`))"
}
}
优化器执行索引扫描,读取60行。
当ID = 60时,fenwick的好处是4次获取而不是60次。
现在,考虑一下如何缩放,例如,值高达64K。
使用fenwick,16位值最多可设置16位,因此要查找的元素数最多为16位。
如果没有fenwick,扫描最多可以读取64K个条目(平均读数为32K)。
OP的问题是为给定的体重找到一个条目。
例如
SET @search_weight := 35.123;
为了说明算法,这篇文章详细说明了查找的完成情况(对不起,如果这太详细了)
SET @found_id := 0;
首先,找出有多少条目。
SET @max_id := (select id from entries order by id desc limit 1);
在测试数据中,max_id为156。
因为128&lt; = max_id&lt; 256,开始搜索的最高位是128。
mysql> set @search_id := @found_id + 128;
mysql> select id, fenwick, @search_weight,
-> if (fenwick <= @search_weight, "keep", "discard") as action
-> from entries where id = @search_id;
+-----+---------+----------------+---------+
| id | fenwick | @search_weight | action |
+-----+---------+----------------+---------+
| 128 | 66.540 | 35.123 | discard |
+-----+---------+----------------+---------+
重量66.540大于我们的搜索,所以128被丢弃,继续下一位。
mysql> set @search_id := @found_id + 64;
mysql> select id, fenwick, @search_weight,
-> if (fenwick <= @search_weight, "keep", "discard") as action
-> from entries where id = @search_id;
+----+---------+----------------+--------+
| id | fenwick | @search_weight | action |
+----+---------+----------------+--------+
| 64 | 33.950 | 35.123 | keep |
+----+---------+----------------+--------+
这里我们需要保持这个位(64),并计算找到的重量:
set @found_id := @search_id, @search_weight := @search_weight - 33.950;
然后继续下一位:
mysql> set @search_id := @found_id + 32;
mysql> select id, fenwick, @search_weight,
-> if (fenwick <= @search_weight, "keep", "discard") as action
-> from entries where id = @search_id;
+----+---------+----------------+---------+
| id | fenwick | @search_weight | action |
+----+---------+----------------+---------+
| 96 | 16.260 | 1.173 | discard |
+----+---------+----------------+---------+
mysql> set @search_id := @found_id + 16;
mysql> select id, fenwick, @search_weight,
-> if (fenwick <= @search_weight, "keep", "discard") as action
-> from entries where id = @search_id;
+----+---------+----------------+---------+
| id | fenwick | @search_weight | action |
+----+---------+----------------+---------+
| 80 | 7.394 | 1.173 | discard |
+----+---------+----------------+---------+
mysql> set @search_id := @found_id + 8;
mysql> select id, fenwick, @search_weight,
-> if (fenwick <= @search_weight, "keep", "discard") as action
-> from entries where id = @search_id;
+----+---------+----------------+---------+
| id | fenwick | @search_weight | action |
+----+---------+----------------+---------+
| 72 | 3.995 | 1.173 | discard |
+----+---------+----------------+---------+
mysql> set @search_id := @found_id + 4;
mysql> select id, fenwick, @search_weight,
-> if (fenwick <= @search_weight, "keep", "discard") as action
-> from entries where id = @search_id;
+----+---------+----------------+---------+
| id | fenwick | @search_weight | action |
+----+---------+----------------+---------+
| 68 | 1.915 | 1.173 | discard |
+----+---------+----------------+---------+
mysql> set @search_id := @found_id + 2;
mysql> select id, fenwick, @search_weight,
-> if (fenwick <= @search_weight, "keep", "discard") as action
-> from entries where id = @search_id;
+----+---------+----------------+--------+
| id | fenwick | @search_weight | action |
+----+---------+----------------+--------+
| 66 | 1.146 | 1.173 | keep |
+----+---------+----------------+--------+
我们在这里发现了另一点
set @found_id := @search_id, @search_weight := @search_weight - 1.146;
mysql> set @search_id := @found_id + 1;
mysql> select id, fenwick, @search_weight,
-> if (fenwick <= @search_weight, "keep", "discard") as action
-> from entries where id = @search_id;
+----+---------+----------------+--------+
| id | fenwick | @search_weight | action |
+----+---------+----------------+--------+
| 67 | 0.010 | 0.027 | keep |
+----+---------+----------------+--------+
还有一个
set @found_id := @search_id, @search_weight := @search_weight - 0.010;
最终搜索结果是:
mysql> select @found_id, @search_weight;
+-----------+----------------+
| @found_id | @search_weight |
+-----------+----------------+
| 67 | 0.017 |
+-----------+----------------+
验证
mysql> select sum(weight) from entries where id <= 67;
+-------------+
| sum(weight) |
+-------------+
| 35.106 |
+-------------+
mysql> select sum(weight) from entries where id <= 68;
+-------------+
| sum(weight) |
+-------------+
| 35.865 |
+-------------+
事实上,
35.106 (fenwick[67]) <= 35.123 (search) <= 35.865 (fenwick[68])
搜索查找值一次解析1位,每个查找结果决定要搜索的下一个ID的值。
此处给出的查询仅供参考。在实际应用程序中,代码应该只是一个包含以下内容的循环:
SELECT fenwick from entries where id = ?;
使用应用程序代码(或存储过程)实现与@found_id,@ search_id和@search_weight相关的逻辑。
P.S。
sqlfiddle今天已经关闭了,所以发布使用的原始数据(最初由concat提供),以便有兴趣的人可以重新运行测试。
INSERT INTO `entries` VALUES (1,0.480,0.480),(2,0.542,1.022),(3,0.269,0.269),(4,0.721,2.012),(5,0.798,0.798),(6,0.825,1.623),(7,0.731,0.731),(8,0.181,4.547),(9,0.711,0.711),(10,0.013,0.724),(11,0.930,0.930),(12,0.613,2.267),(13,0.276,0.276),(14,0.539,0.815),(15,0.867,0.867),(16,0.718,9.214),(17,0.991,0.991),(18,0.801,1.792),(19,0.033,0.033),(20,0.759,2.584),(21,0.698,0.698),(22,0.212,0.910),(23,0.965,0.965),(24,0.189,4.648),(25,0.049,0.049),(26,0.678,0.727),(27,0.245,0.245),(28,0.190,1.162),(29,0.214,0.214),(30,0.502,0.716),(31,0.868,0.868),(32,0.834,17.442),(33,0.566,0.566),(34,0.327,0.893),(35,0.939,0.939),(36,0.713,2.545),(37,0.747,0.747),(38,0.595,1.342),(39,0.733,0.733),(40,0.884,5.504),(41,0.218,0.218),(42,0.437,0.655),(43,0.532,0.532),(44,0.350,1.537),(45,0.154,0.154),(46,0.721,0.875),(47,0.140,0.140),(48,0.538,8.594),(49,0.271,0.271),(50,0.739,1.010),(51,0.884,0.884),(52,0.203,2.097),(53,0.361,0.361),(54,0.197,0.558),(55,0.903,0.903),(56,0.923,4.481),(57,0.906,0.906),(58,0.761,1.667),(59,0.089,0.089),(60,0.161,1.917),(61,0.537,0.537),(62,0.201,0.738),(63,0.397,0.397),(64,0.381,33.950),(65,0.715,0.715),(66,0.431,1.146),(67,0.010,0.010),(68,0.759,1.915),(69,0.763,0.763),(70,0.537,1.300),(71,0.399,0.399),(72,0.381,3.995),(73,0.709,0.709),(74,0.401,1.110),(75,0.880,0.880),(76,0.198,2.188),(77,0.348,0.348),(78,0.148,0.496),(79,0.693,0.693),(80,0.022,7.394),(81,0.031,0.031),(82,0.089,0.120),(83,0.353,0.353),(84,0.498,0.971),(85,0.428,0.428),(86,0.650,1.078),(87,0.963,0.963),(88,0.866,3.878),(89,0.442,0.442),(90,0.610,1.052),(91,0.725,0.725),(92,0.797,2.574),(93,0.808,0.808),(94,0.648,1.456),(95,0.817,0.817),(96,0.141,16.260),(97,0.256,0.256),(98,0.855,1.111),(99,0.508,0.508),(100,0.976,2.595),(101,0.353,0.353),(102,0.840,1.193),(103,0.139,0.139),(104,0.178,4.105),(105,0.469,0.469),(106,0.814,1.283),(107,0.664,0.664),(108,0.876,2.823),(109,0.390,0.390),(110,0.323,0.713),(111,0.442,0.442),(112,0.241,8.324),(113,0.881,0.881),(114,0.681,1.562),(115,0.760,0.760),(116,0.760,3.082),(117,0.518,0.518),(118,0.313,0.831),(119,0.008,0.008),(120,0.103,4.024),(121,0.488,0.488),(122,0.135,0.623),(123,0.207,0.207),(124,0.633,1.463),(125,0.542,0.542),(126,0.812,1.354),(127,0.433,0.433),(128,0.732,66.540),(129,0.358,0.358),(130,0.594,0.952),(131,0.897,0.897),(132,0.701,2.550),(133,0.815,0.815),(134,0.973,1.788),(135,0.419,0.419),(136,0.175,4.932),(137,0.620,0.620),(138,0.573,1.193),(139,0.004,0.004),(140,0.304,1.501),(141,0.508,0.508),(142,0.629,1.137),(143,0.618,0.618),(144,0.206,8.394),(145,0.175,0.175),(146,0.255,0.430),(147,0.750,0.750),(148,0.987,2.167),(149,0.683,0.683),(150,0.453,1.136),(151,0.219,0.219),(152,0.734,4.256),(153,0.016,0.016),(154,0.874,0.891),(155,0.325,0.325),(156,0.002,1.217);
P.S。 2
现在有一个完整的sqlfiddle:
答案 1 :(得分:0)
(使用的答案框,因为它可以选择格式化)。
如Rick所示,发动机是这种情况下的主要问题。您可以通过在索引创建中使用“USING BTREE”来影响创建的索引类型(在这种情况下,BTREE或HASH似乎并不重要:迭代一个范围:然后BTREE是最佳的。但是你可以检索它值,然后HASH是最佳的:您的查询有两种行为。)
当您切换到INNODB时,缓存将使查询可能与内存表中的查询一样快。然后,您可以获得索引的好处。为了保证BTREE索引,我将按如下方式创建模式:
CREATE TABLE `entries` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`weight` decimal(9,3) DEFAULT NULL,
`fenwick` decimal(9,3) NOT NULL DEFAULT '0.000',
PRIMARY KEY (`id`)
) ENGINE=INNODB DEFAULT CHARSET=latin1;
CREATE UNIQUE INDEX idx_nn_1 ON entries (id,fenwick) USING BTREE;
这在主计算中使用idx_nn_1索引(并且仅使用索引:由于所有数据都在索引中,因此根本不使用整个表)。然而,100条记录的样本量太小,无法给出关于性能的任何明确答案。与仅通过使用表访问的数据相比,索引构建的时间可能会使您根本没有任何性能提升。所以最后的答案将在你的测试中。
其他数据库引擎(SQL Server,Oracle,Postgres):它们将显示类似的行为。因此切换到这些引擎中的任何一个都不会产生很大的不同,除了可能通常更好的处理(无法预测这一点)。
SQL Server在构建索引时可能会更好(=更快),因为它只会在id上使用唯一索引并包含fenwick值,因此无需真正索引该值。
Oracle可以真正强制索引,但是不建议这样做:在Oracle中,假设表中有序数据,读取表比读取索引更快,然后查找表。同样在这种情况下,您只需添加id,fenwick索引并永远不会访问该表。考虑到索引创建时间,Oracle无论如何都必须读取整个表,并且在那段时间内(或者更少取决于达到退出条件所需的记录数),它也会执行您的计算。
答案 2 :(得分:0)
Fenwick树是否足够静态以预先计算某些东西?如果是这样,我可以给你一个几乎O(1)的解决方案:
然后查找:
SELECT n FROM tbl WHERE cumulative_sum > 3.325
ORDER BY cumulative_sum LIMIT 1;
如果@variables出现问题,那么让存储过程通过CONCAT
,PREPARE
和EXECUTE
构建SQL。
<强>附加物强>
鉴于它是定期完全替换,请在重建表时计算累积总和。我的SELECT
只查看一行,因此它是O(1)(忽略BTree查找)。
对于“完全替换”,我建议:
CREATE TABLE new LIKE real;
load the data into `new` -- this is the slowest step
RENAME TABLE real TO old, new TO real; -- atomic and fast, so no "downtime"
DROP TABLE old;
答案 3 :(得分:0)
为了补充Marc的答案,对于存储过程或函数,无法直接通过函数参数传递要求的索引列表,我们可以在查询中生成索引,JOIN
它到求和查询:
SELECT SUM(fenwick) FROM entries
CROSS JOIN (SELECT @n:=60) a
INNER JOIN (
SELECT @n AS id, 0
UNION
SELECT
IF(@n&@bit<>0, @n:=@n-(@n&@bit), NULL) AS id,
(@bit:=@bit<<1)
FROM entries
CROSS JOIN (SELECT @bit:=1) a
LIMIT 32
) dt ON dt.id=entries.id;
我希望性能类似,客户端不再需要生成索引。