import pygame
import random
import numpy as np
import matplotlib.pyplot as plt
import math
number_of_particles = 70
my_particles = []
background_colour = (255,255,255)
width, height = 500, 500
sigma = 1
e = 1
dt = 0.1
v = 0
a = 0
r = 1
def r(p1,p2):
dx = p1.x - p2.x
dy = p1.y - p2.y
angle = 0.5 * math.pi - math.atan2(dy, dx)
dist = np.hypot(dx, dy)
return dist
def collide(p1, p2):
dx = p1.x - p2.x
dy = p1.y - p2.y
dist = np.hypot(dx, dy)
if dist < (p1.size + p2.size):
tangent = math.atan2(dy, dx)
angle = 0.5 * np.pi + tangent
angle1 = 2*tangent - p1.angle
angle2 = 2*tangent - p2.angle
speed1 = p2.speed
speed2 = p1.speed
(p1.angle, p1.speed) = (angle1, speed1)
(p2.angle, p2.speed) = (angle2, speed2)
overlap = 0.5*(p1.size + p2.size - dist+1)
p1.x += np.sin(angle) * overlap
p1.y -= np.cos(angle) * overlap
p2.x -= np.sin(angle) * overlap
p2.y += np.cos(angle) * overlap
def LJ(r):
return -24*e*((2/r*(sigma/r)**12)-1/r*(sigma/r)**6)
def verlet():
a1 = -LJ(r(p1,p2))
r = r + dt*v+0.5*dt**2*a1
a2 = -LJ(r(p1,p2))
v = v + 0.5*dt*(a1+a2)
return r, v
class Particle():
def __init__(self, (x, y), size):
self.x = x
self.y = y
self.size = size
self.colour = (0, 0, 255)
self.thickness = 1
self.speed = 0
self.angle = 0
def display(self):
pygame.draw.circle(screen, self.colour, (int(self.x), int(self.y)), self.size, self.thickness)
def move(self):
self.x += np.sin(self.angle)
self.y -= np.cos(self.angle)
def bounce(self):
if self.x > width - self.size:
self.x = 2*(width - self.size) - self.x
self.angle = - self.angle
elif self.x < self.size:
self.x = 2*self.size - self.x
self.angle = - self.angle
if self.y > height - self.size:
self.y = 2*(height - self.size) - self.y
self.angle = np.pi - self.angle
elif self.y < self.size:
self.y = 2*self.size - self.y
self.angle = np.pi - self.angle
screen = pygame.display.set_mode((width, height))
for n in range(number_of_particles):
x = random.randint(15, width-15)
y = random.randint(15, height-15)
particle = Particle((x, y), 15)
particle.speed = random.random()
particle.angle = random.uniform(0, np.pi*2)
my_particles.append(particle)
running = True
while running:
for event in pygame.event.get():
if event.type == pygame.QUIT:
running = False
screen.fill(background_colour)
for i, particle in enumerate(my_particles):
particle.move()
particle.bounce()
for particle2 in my_particles[i+1:]:
collide(particle, particle2)
particle.display()
pygame.display.flip()
pygame.quit()
我想通过Lennard-Jones潜力来模拟粒子。我的代码问题是我不知道如何使用Verlet算法。
move
方法中使用Verlet算法的速度?答案 0 :(得分:1)
您可以将动态变量,位置和速度保持在类实例中,但是每个类都需要一个加速度向量来累积力贡献。 Verlet集成商具有控制器的作用,它从外部作用于所有粒子的集合。将角度保持在计算之外,使用三角函数保持四边形和背面,并且不需要它们的反转。使所有2D矢量的位置,速度和加速度。
实现 velocity Verlet变体的一种方法是(参见https://stackoverflow.com/tags/verlet-integration/info)
verlet_step:
v += a*0.5*dt;
x += v*dt; t += dt;
do_collisions(t,x,v,dt);
a = eval_a(x);
v += a*0.5*dt;
do_statistics(t,x,v);
假设一个矢量化变体。在您的框架中,将对粒子集合进行一些迭代以包含,
verlet_step:
for p in particles:
p.v += p.a*0.5*dt; p.x += p.v*dt;
t += dt;
for i, p1 in enumerate(particles):
for p2 in particles[i+1:]:
collide(p1,p2);
for i, p1 in enumerate(particles):
for p2 in particles[i+1:]:
apply_LJ_forces(p1,p2);
for p in particles:
p.v += p.a*0.5*dt;
do_statistics(t,x,v);
不,你没有做错任何事,因为你实际上没有调用Verlet函数来更新位置和速度。不,不需要严格的矢量化,见上文。通过particles
数组的隐式向量化就足够了。如果你想用scipy.integrate中的标准积分器的结果进行比较,你只需要一个完整的矢量化,使用相同的模型来提供ODE函数。