使用scikit-learn删除方差较小的要素

时间:2015-03-27 10:52:14

标签: python-2.7 scikit-learn scikits

scikit-learn提供了各种删除描述符的方法,下面给出的教程提供了一个用于此目的的基本方法,

http://scikit-learn.org/stable/modules/feature_selection.html#

但是本教程没有提供任何方法或方法来告诉您如何保留已删除或保留的功能列表。

以下代码摘自本教程。

    from sklearn.feature_selection import VarianceThreshold
    X = [[0, 0, 1], [0, 1, 0], [1, 0, 0], [0, 1, 1], [0, 1, 0], [0, 1, 1]]
    sel = VarianceThreshold(threshold=(.8 * (1 - .8)))
    sel.fit_transform(X)
array([[0, 1],
       [1, 0],
       [0, 0],
       [1, 1],
       [1, 0],
       [1, 1]])

上面给出的示例代码仅描述了两个描述符“shape(6,2)”,但在我的情况下,我有一个形状为(第51行,第9000列)的巨大数据帧。找到合适的模型后,我想保留有用和无用的功能,因为我可以通过计算有用的功能来计算测试数据集的功能,从而节省计算时间。

例如,当您使用WEKA 6.0执行机器学习建模时,它在功能选择方面具有非凡的灵活性,在删除无用功能后,您可以获得已丢弃功能的列表以及有用的功能。

谢谢

4 个答案:

答案 0 :(得分:9)

然后,如果我没错,你可以做的是:

如果是VarianceThreshold,您可以调用方法fit而不是fit_transform。这将适合数据,结果差异将存储在vt.variances_中(假设vt是您的对象)。

拥有一个threhold,您可以像fit_transform那样提取转换的功能:

X[:, vt.variances_ > threshold]

或者将索引作为:

idx = np.where(vt.variances_ > threshold)[0]

或作为面具

mask = vt.variances_ > threshold

PS:默认阈值为0

编辑:

更直接的做法是使用类get_support的方法VarianceThreshold。来自文档:

get_support([indices])  Get a mask, or integer index, of the features selected

您应该在fitfit_transform之后调用此方法。

答案 1 :(得分:6)

import numpy as np
import pandas as pd
from sklearn.feature_selection import VarianceThreshold

# Just make a convenience function; this one wraps the VarianceThreshold
# transformer but you can pass it a pandas dataframe and get one in return

def get_low_variance_columns(dframe=None, columns=None,
                             skip_columns=None, thresh=0.0,
                             autoremove=False):
    """
    Wrapper for sklearn VarianceThreshold for use on pandas dataframes.
    """
    print("Finding low-variance features.")
    try:
        # get list of all the original df columns
        all_columns = dframe.columns

        # remove `skip_columns`
        remaining_columns = all_columns.drop(skip_columns)

        # get length of new index
        max_index = len(remaining_columns) - 1

        # get indices for `skip_columns`
        skipped_idx = [all_columns.get_loc(column)
                       for column
                       in skip_columns]

        # adjust insert location by the number of columns removed
        # (for non-zero insertion locations) to keep relative
        # locations intact
        for idx, item in enumerate(skipped_idx):
            if item > max_index:
                diff = item - max_index
                skipped_idx[idx] -= diff
            if item == max_index:
                diff = item - len(skip_columns)
                skipped_idx[idx] -= diff
            if idx == 0:
                skipped_idx[idx] = item

        # get values of `skip_columns`
        skipped_values = dframe.iloc[:, skipped_idx].values

        # get dataframe values
        X = dframe.loc[:, remaining_columns].values

        # instantiate VarianceThreshold object
        vt = VarianceThreshold(threshold=thresh)

        # fit vt to data
        vt.fit(X)

        # get the indices of the features that are being kept
        feature_indices = vt.get_support(indices=True)

        # remove low-variance columns from index
        feature_names = [remaining_columns[idx]
                         for idx, _
                         in enumerate(remaining_columns)
                         if idx
                         in feature_indices]

        # get the columns to be removed
        removed_features = list(np.setdiff1d(remaining_columns,
                                             feature_names))
        print("Found {0} low-variance columns."
              .format(len(removed_features)))

        # remove the columns
        if autoremove:
            print("Removing low-variance features.")
            # remove the low-variance columns
            X_removed = vt.transform(X)

            print("Reassembling the dataframe (with low-variance "
                  "features removed).")
            # re-assemble the dataframe
            dframe = pd.DataFrame(data=X_removed,
                                  columns=feature_names)

            # add back the `skip_columns`
            for idx, index in enumerate(skipped_idx):
                dframe.insert(loc=index,
                              column=skip_columns[idx],
                              value=skipped_values[:, idx])
            print("Succesfully removed low-variance columns.")

        # do not remove columns
        else:
            print("No changes have been made to the dataframe.")

    except Exception as e:
        print(e)
        print("Could not remove low-variance features. Something "
              "went wrong.")
        pass

    return dframe, removed_features

答案 2 :(得分:1)

在测试功能时,我编写了这个简单的函数,它告诉我应用 VarianceThreshold 后哪些变量保留在数据框中。

from sklearn.feature_selection import VarianceThreshold
from itertools import compress

def fs_variance(df, threshold:float=0.1):
    """
    Return a list of selected variables based on the threshold.
    """

    # The list of columns in the data frame
    features = list(df.columns)
    
    # Initialize and fit the method
    vt = VarianceThreshold(threshold = threshold)
    _ = vt.fit(df)
    
    # Get which column names which pass the threshold
    feat_select = list(compress(features, vt.get_support()))
    
    return feat_select

返回所选列名的列表。例如:['col_2','col_14', 'col_17']

答案 3 :(得分:0)

这对我有用,如果您想精确地确定阈值后剩余的列,可以使用以下方法:

from sklearn.feature_selection import VarianceThreshold
threshold_n=0.95
sel = VarianceThreshold(threshold=(threshold_n* (1 - threshold_n) ))
sel_var=sel.fit_transform(data)
data[data.columns[sel.get_support(indices=True)]]