我正在Scala中编写一个数据挖掘算法,我想为给定的测试和几个列车实例编写欧几里德距离函数。我有Array[Array[Double]]
测试和训练实例。我有一个方法,它针对所有训练实例循环遍历每个测试实例,并计算两者之间的距离(每次迭代选择一个测试和训练实例)并返回Double
。
比如说,我有以下数据点:
testInstance = Array(Array(3.2, 2.1, 4.3, 2.8))
trainPoints = Array(Array(3.9, 4.1, 6.2, 7.3), Array(4.5, 6.1, 8.3, 3.8), Array(5.2, 4.6, 7.4, 9.8), Array(5.1, 7.1, 4.4, 6.9))
我有一个方法存根(突出显示距离函数),它返回给定测试实例周围的邻居:
def predictClass(testPoints: Array[Array[Double]], trainPoints: Array[Array[Double]], k: Int): Array[Double] = {
for(testInstance <- testPoints)
{
for(trainInstance <- trainPoints)
{
for(i <- 0 to k)
{
distance = euclideanDistanceBetween(testInstance, trainInstance) //need help in defining this function
}
}
}
return distance
}
我知道如何将通用欧几里德距离公式编写为:
math.sqrt(math.pow((x1 - y1), 2) + math.pow((x2 - y2), 2))
我有一些伪步骤,关于我希望该方法对函数的基本定义做什么:
def distanceBetween(testInstance: Array[Double], trainInstance: Array[Double]): Double = {
// subtract each element of trainInstance with testInstance
// for example,
// iteration 1 will do [Array(3.9, 4.1, 6.2, 7.3) - Array(3.2, 2.1, 4.3, 2.8)]
// i.e. sqrt(3.9-3.2)^2+(4.1-2.1)^2+(6.2-4.3)^2+(7.3-2.8)^2
// return result
// iteration 2 will do [Array(4.5, 6.1, 8.3, 3.8) - Array(3.2, 2.1, 4.3, 2.8)]
// i.e. sqrt(4.5-3.2)^2+(6.1-2.1)^2+(8.3-4.3)^2+(3.8-2.8)^2
// return result, and so on......
}
我如何在代码中写这个?
答案 0 :(得分:8)
因此,您输入的公式仅适用于二维向量。你有四个维度,但你应该编写你的功能以便灵活处理这个问题。请查看this formula。
所以你真正想说的是:
for each position i:
subtract the ith element of Y from the ith element of X
square it
add all of those up
square root the whole thing
为了使这种更具功能性的编程风格,它更像是:
square root the:
sum of:
zip X and Y into pairs
for each pair, square the difference
所以看起来像:
import math._
def distance(xs: Array[Double], ys: Array[Double]) = {
sqrt((xs zip ys).map { case (x,y) => pow(y - x, 2) }.sum)
}
val testInstances = Array(Array(5.0, 4.8, 7.5, 10.0), Array(3.2, 2.1, 4.3, 2.8))
val trainPoints = Array(Array(3.9, 4.1, 6.2, 7.3), Array(4.5, 6.1, 8.3, 3.8), Array(5.2, 4.6, 7.4, 9.8), Array(5.1, 7.1, 4.4, 6.9))
distance(testInstances.head, trainPoints.head)
// 3.2680269276736382
至于预测课程,你可以使它更具功能性,但不清楚你想要返回的是什么。您似乎想要预测每个测试实例的类?也许选择与最近的训练点相对应的班级c
?
def findNearestClasses(testPoints: Array[Array[Double]], trainPoints: Array[Array[Double]]): Array[Int] = {
testPoints.map { testInstance =>
trainPoints.zipWithIndex.map { case (trainInstance, c) =>
c -> distance(testInstance, trainInstance)
}.minBy(_._2)._1
}
}
findNearestClasses(testInstances, trainPoints)
// Array(2, 0)
或许你想要k
- 最近的邻居:
def findKNearestClasses(testPoints: Array[Array[Double]], trainPoints: Array[Array[Double]], k: Int): Array[Int] = {
testPoints.map { testInstance =>
val distances =
trainPoints.zipWithIndex.map { case (trainInstance, c) =>
c -> distance(testInstance, trainInstance)
}
val classes = distances.sortBy(_._2).take(k).map(_._1)
val classCounts = classes.groupBy(identity).mapValues(_.size)
classCounts.maxBy(_._2)._1
}
}
findKNearestClasses(testInstances, trainPoints)
// Array(2, 1)
答案 1 :(得分:0)
欧式距离的通用公式如下:
math.sqrt(math.pow((x1 - x2), 2) + math.pow((y1 - y2), 2))
您只能将x坐标与x进行比较,将y与y进行比较。