考虑以下来自Mathworks的图像:
我用
标记了斑点 [L, num]= bwlabel(I);
如何迭代连接所有blob,即启动一个blob并找到最近的blob。考虑最左边的两个blob,可以有很多行可以从blob的许多点绘制来连接到另一个blob,但最短的一个将通过找到最接近另一个blob的blob的像素,在另一个blob中找到一个相似的像素并连接这两个像素来获得。我想以这种方式连接它们。连接它们后,使它们成为单个blob,找到最接近这个新blob的blob连接它们,依此类推,直到所有整个图像都有一个封闭的结构?此外,斑点不总是圆形的,它们是随机的形状。
这里也提出了类似的问题:
How to find the shortest path between two blobs(contours/closed curves) using MATLAB?
和
http://in.mathworks.com/matlabcentral/newsreader/view_thread/270149
使用bwdist(),我可以分离两个blob并使用暴力方法通过测试第二个链接中提到的两个blob中的所有像素对来找到最短距离但是它需要很长时间。在那里更好的方法来解决这个问题,以便更快地获得结果?
修改
这是另一张图片:
必填图片:
答案 0 :(得分:3)
%// Read image, convert to binary and remove some whitish border across it
im = im2bw(imread('http://i.stack.imgur.com/vUsrl.png'));
BW = im(3:end-2,3:end-2);
figure, imshow(BW), title('Starting/Original Image')
%// Find centroid points for each blob
cpts = reshape(round(struct2array(regionprops(BW,'Centroid'))),2,[])'; %//'
%// Initialize 2 groups- "hungry" & "feeder" groups, naming them as grp1 & grp2
grp1 = []; grp2 = cpts;
%// Initialize the blob index matching IDs
R = 1; C = 1;
while ~isempty(grp2)
%// Get one from Group-2 into Group 1 based on the closest one that was
%//obtained from the previous iteration. Remove that from Group -2.
grp1 = [grp1 ; grp2(C,:)];
grp2(C,:) = [];
%// Find squared distances between those two groups
sq_distmat = squared_dist(grp1,grp2);
%// Find the IDs minimum one across row and column which would be the
%IDs for group 1 and 2 respectively, calling them as R and C
[~,idx] = min(sq_distmat(:));
[R,C] = ind2sub(size(sq_distmat),idx);
%// Draw the connecting line
BW = linept(BW, grp1(R,2), grp1(R,1), grp2(C,2), grp2(C,1));
end
figure, imshow(BW), title('Final Connected Image')
相关功能 -
function sq_distmat = squared_dist(A,B)
[nA,dim] = size(A);
nB = size(B,1);
A_ext = ones(nA,dim*3);
A_ext(:,2:3:end) = -2*A;
A_ext(:,3:3:end) = A.^2;
B_ext = ones(nB,dim*3);
B_ext(:,1:3:end) = B.^2;
B_ext(:,2:3:end) = B;
sq_distmat = A_ext * B_ext.';
return;
动画乐趣 -
%// Read image, convert to binary and remove some whitish border across it
im = im2bw(imread('http://i.stack.imgur.com/vUsrl.png'));
BW = im(3:end-2,3:end-2);
%// Find boundary points as a cell array
bpts_cell = bwboundaries(BW);
%// Initialize 2 groups- "hungry" & "feeder" groups, naming them as grp1 & grp2
grp1c = []; grp2c = bpts_cell;
ID = 1;
for iter = 1:numel(bpts_cell)-1
%// Get one from Group-2 into Group 1 based on the closest one that was
%obtained from the previous iteration. Remove that from Group -2.
grp1c = [grp1c ; grp2c(ID)];
grp2c(ID,:) = [];
grp1 = vertcat(grp1c{:});
grp2 = vertcat(grp2c{:});
%// Find squared distances between those two groups
sq_distmat = squared_dist(grp1,grp2);
%// Find the IDs minimum one across row and column which would be the
%IDs for group 1 and 2 respectively, calling them as R and C
[~,idx] = min(sq_distmat(:));
[R,C] = ind2sub(size(sq_distmat),idx);
%// Draw the connecting line
BW = linept(BW, grp1(R,1), grp1(R,2), grp2(C,1), grp2(C,2));
lens = cellfun('length',grp2c);
clens = cumsum(lens);
ID = find(C<=clens,1);
end
动画乐趣 -
带有编辑图像的动画输出 -